Poisson-Gaussian Noise Reduction Using the Hidden Markov Model in Contourlet Domain for Fluorescence Microscopy Images

In certain image acquisitions processes, like in fluorescence microscopy or astronomy, only a limited number of photons can be collected due to various physical constraints. The resulting images suffer from signal dependent noise, which can be modeled as a Poisson distribution, and a low signal-to-noise ratio. However, the majority of research on noise reduction algorithms focuses on signal independent Gaussian noise. In this paper, we model noise as a combination of Poisson and Gaussian probability distributions to construct a more accurate model and adopt the contourlet transform which provides a sparse representation of the directional components in images. We also apply hidden Markov models with a framework that neatly describes the spatial and interscale dependencies which are the properties of transformation coefficients of natural images. In this paper, an effective denoising algorithm for Poisson-Gaussian noise is proposed using the contourlet transform, hidden Markov models and noise estimation in the transform domain. We supplement the algorithm by cycle spinning and Wiener filtering for further improvements. We finally show experimental results with simulations and fluorescence microscopy images which demonstrate the improved performance of the proposed approach.

[1]  E. Kolaczyk,et al.  Nonparametric Estimation of Intensity Maps Using Haar Wavelets and Poisson Noise Characteristics , 2000 .

[2]  Alessandro Foi,et al.  Optimal Inversion of the Generalized Anscombe Transformation for Poisson-Gaussian Noise , 2013, IEEE Transactions on Image Processing.

[3]  Thierry Blu,et al.  Fast interscale wavelet denoising of Poisson-corrupted images , 2010, Signal Process..

[4]  Edward H. Adelson,et al.  The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..

[5]  Y. Kim,et al.  Improved Poisson intensity estimation: denoising application using Poisson data , 2004, IEEE Transactions on Image Processing.

[6]  G. Nason,et al.  A Haar-Fisz Algorithm for Poisson Intensity Estimation , 2004 .

[7]  F. J. Anscombe,et al.  THE TRANSFORMATION OF POISSON, BINOMIAL AND NEGATIVE-BINOMIAL DATA , 1948 .

[8]  Minh N. Do,et al.  The Nonsubsampled Contourlet Transform: Theory, Design, and Applications , 2006, IEEE Transactions on Image Processing.

[9]  Martin J. Wainwright,et al.  Image denoising using scale mixtures of Gaussians in the wavelet domain , 2003, IEEE Trans. Image Process..

[10]  Mohamed-Jalal Fadili,et al.  Multiscale Variance-Stabilizing Transform for Mixed-Poisson-Gaussian Processes and its Applications in Bioimaging , 2007, 2007 IEEE International Conference on Image Processing.

[11]  E. Kolaczyk WAVELET SHRINKAGE ESTIMATION OF CERTAIN POISSON INTENSITY SIGNALS USING CORRECTED THRESHOLDS , 1999 .

[12]  Thierry Blu,et al.  Image Denoising in Mixed Poisson–Gaussian Noise , 2011, IEEE Transactions on Image Processing.

[13]  Karen O. Egiazarian,et al.  Practical Poissonian-Gaussian Noise Modeling and Fitting for Single-Image Raw-Data , 2008, IEEE Transactions on Image Processing.

[14]  Emmanuel J. Candès,et al.  The curvelet transform for image denoising , 2002, IEEE Trans. Image Process..

[15]  David L. Donoho,et al.  Nonlinear Wavelet Methods for Recovery of Signals, Densities, and Spectra from Indirect and Noisy Da , 1993 .

[16]  Alessandro Foi,et al.  Optimal Inversion of the Anscombe Transformation in Low-Count Poisson Image Denoising , 2011, IEEE Transactions on Image Processing.

[17]  Jong-Sen Lee,et al.  Digital Image Enhancement and Noise Filtering by Use of Local Statistics , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Minh N. Do,et al.  Ieee Transactions on Image Processing the Contourlet Transform: an Efficient Directional Multiresolution Image Representation , 2022 .

[19]  Robert D. Nowak,et al.  Multiscale Modeling and Estimation of Poisson Processes with Application to Photon-Limited Imaging , 1999, IEEE Trans. Inf. Theory.

[20]  Jeffrey A. Fessler,et al.  Sparsity regularization for image reconstruction with Poisson data , 2009, Electronic Imaging.

[21]  Kannan Ramchandran,et al.  Low-complexity image denoising based on statistical modeling of wavelet coefficients , 1999, IEEE Signal Processing Letters.

[22]  M. Fisz The limiting distribution of a function of two independent random variables and its statistical application , 1955 .

[23]  Catherine Charles,et al.  Wavelet denoising of Poisson-distributed data and applications , 2003, Comput. Stat. Data Anal..

[24]  H. Robbins The Empirical Bayes Approach to Statistical Decision Problems , 1964 .

[25]  S. Mallat A wavelet tour of signal processing , 1998 .

[26]  Michael Elad,et al.  Sparsity-Based Poisson Denoising With Dictionary Learning , 2013, IEEE Transactions on Image Processing.

[27]  Patrick Bouthemy,et al.  Patch-Based Nonlocal Functional for Denoising Fluorescence Microscopy Image Sequences , 2010, IEEE Transactions on Medical Imaging.

[28]  D. Donoho,et al.  Translation-Invariant De-Noising , 1995 .

[29]  M. Jansen Multiscale Poisson data smoothing , 2006 .

[30]  Alessandro Foi,et al.  Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering , 2007, IEEE Transactions on Image Processing.

[31]  Alessandro Foi,et al.  Noise Parameter Mismatch in Variance Stabilization, With an Application to Poisson–Gaussian Noise Estimation , 2014, IEEE Transactions on Image Processing.

[32]  Mark J. T. Smith,et al.  A filter bank for the directional decomposition of images: theory and design , 1992, IEEE Trans. Signal Process..

[33]  D. D.-Y. Po,et al.  Directional multiscale modeling of images using the contourlet transform , 2006, IEEE Transactions on Image Processing.

[34]  Alessandro Foi,et al.  Ieee Transactions on Image Processing a Closed-form Approximation of the Exact Unbiased Inverse of the Anscombe Variance-stabilizing Transformation , 2022 .

[35]  Fionn Murtagh,et al.  Image Processing and Data Analysis - The Multiscale Approach , 1998 .

[36]  Robert D. Nowak,et al.  Wavelet-based statistical signal processing using hidden Markov models , 1998, IEEE Trans. Signal Process..

[37]  Rebecca Willett,et al.  Poisson Noise Reduction with Non-local PCA , 2012, Journal of Mathematical Imaging and Vision.

[38]  C. Stein Estimation of the Mean of a Multivariate Normal Distribution , 1981 .

[39]  B. Vidakovic,et al.  Bayesian Inference in Wavelet-Based Models , 1999 .

[40]  Robert D. Nowak,et al.  Wavelet-domain filtering for photon imaging systems , 1999, IEEE Trans. Image Process..

[41]  Mohamed-Jalal Fadili,et al.  Wavelets, Ridgelets, and Curvelets for Poisson Noise Removal , 2008, IEEE Transactions on Image Processing.

[42]  Rebecca Willett,et al.  This is SPIRAL-TAP: Sparse Poisson Intensity Reconstruction ALgorithms—Theory and Practice , 2010, IEEE Transactions on Image Processing.

[43]  Petros Maragos,et al.  Bayesian Inference on Multiscale Models for Poisson Intensity Estimation: Applications to Photon-Limited Image Denoising , 2009, IEEE Transactions on Image Processing.

[44]  Eero P. Simoncelli Bayesian Denoising of Visual Images in the Wavelet Domain , 1999 .

[45]  R. Eslami,et al.  The contourlet transform for image denoising using cycle spinning , 2003, The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003.

[46]  Dirk Roose,et al.  Wavelet-based image denoising using a Markov random field a priori model , 1997, IEEE Trans. Image Process..