Some new ideas in nonparametric estimation

In the framework of an abstract statistical model we discuss how to use the solution of one estimation problem ({\it Problem A}) in order to construct an estimator in another, completely different, {\it Problem B}. As a solution of {\it Problem A} we understand a data-driven selection from a given family of estimators $\mathbf{A}(\mH)=\big\{\widehat{A}_\mh, \mh\in\mH\big\}$ and establishing for the selected estimator so-called oracle inequality. %parameterized by some se t$\mH$. If $\hat{\mh}\in\mH$ is the selected parameter and $\mathbf{B}(\mH)=\big\{\widehat{B}_\mh, \mh\in\mH\big\}$ is an estimator's collection built in {\it Problem B} we suggest to use the estimator $\widehat{B}_{\hat{\mh}}$. We present very general selection rule led to selector $\hat{\mh}$ and find conditions under which the estimator $\widehat{B}_{\hat{\mh}}$ is reasonable. Our approach is illustrated by several examples related to adaptive estimation.

[1]  B. V. Bahr,et al.  Inequalities for the $r$th Absolute Moment of a Sum of Random Variables, $1 \leqq r \leqq 2$ , 1965 .

[2]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[3]  Локальные и глобальные верхние функции для случайных полей@@@Local and global upper functions for random fields , 1996 .

[4]  G. Lugosi,et al.  Nonasymptotic universal smoothing factors, kernel complexity and yatracos classes , 1997 .

[5]  P. Gänssler Weak Convergence and Empirical Processes - A. W. van der Vaart; J. A. Wellner. , 1997 .

[6]  S. Efromovich Simultaneous sharp estimation of functions and their derivatives , 1998 .

[7]  P. Massart,et al.  Risk bounds for model selection via penalization , 1999 .

[8]  D. Picard,et al.  Non Linear Estimation in Anisotropic Multiindex Denoising , 1999 .

[9]  T. Cai Adaptive wavelet estimation : A block thresholding and oracle inequality approach , 1999 .

[10]  Arkadi Nemirovski,et al.  Topics in Non-Parametric Statistics , 2000 .

[11]  S. Geer Applications of empirical process theory , 2000 .

[12]  P. Massart,et al.  Gaussian model selection , 2001 .

[13]  G. Kerkyacharian,et al.  Nonlinear estimation in anisotropic multi-index denoising , 2001 .

[14]  M. Wegkamp Model selection in nonparametric regression , 2003 .

[15]  Alexandre B. Tsybakov,et al.  Optimal Rates of Aggregation , 2003, COLT.

[16]  L. Cavalier,et al.  Risk hull method and regularization by projections of ill-posed inverse problems , 2006, math/0611228.

[17]  A. Tsybakov,et al.  Linear and convex aggregation of density estimators , 2006, math/0605292.

[18]  A. Tsybakov,et al.  Aggregation for Gaussian regression , 2007, 0710.3654.

[19]  P. Massart,et al.  Concentration inequalities and model selection , 2007 .

[20]  D. Picard,et al.  Nonlinear Estimation in Anisotropic Multi-Index Denoising. Sparse Case , 2008 .

[21]  Universal pointwise selection rule in multivariate function estimation , 2008, 0811.2649.

[22]  Arnak S. Dalalyan,et al.  Aggregation by exponential weighting, sharp PAC-Bayesian bounds and sparsity , 2008, Machine Learning.

[23]  A. Goldenshluger A universal procedure for aggregating estimators , 2007, 0704.2500.

[24]  Alexander Goldenshluger,et al.  Structural adaptation via $$\mathbb{L}_p$$ -norm oracle inequalities , 2009 .

[25]  H. Kile,et al.  Bandwidth Selection in Kernel Density Estimation , 2010 .

[26]  Gerda Claeskens,et al.  Nonparametric Estimation , 2011, International Encyclopedia of Statistical Science.

[27]  A. Goldenshluger,et al.  Bandwidth selection in kernel density estimation: Oracle inequalities and adaptive minimax optimality , 2010, 1009.1016.

[28]  Alexander Goldenshluger,et al.  UNIFORM BOUNDS FOR NORMS OF SUMS OF INDEPENDENT RANDOM FUNCTIONS , 2009, 0904.1950.

[29]  O. Lepski Upper functions for positive random functionals , 2012, 1202.6615.

[30]  A. Goldenshluger,et al.  On adaptive minimax density estimation on $$R^d$$Rd , 2012, 1210.1715.

[31]  O. Lepski Upper functions for positive random functionals. II. Application to the empirical processes theory, part 1 , 2013 .

[32]  O. Lepski,et al.  Multivariate density estimation under sup-norm loss: Oracle approach, adaptation and independence structure , 2013 .

[33]  O. Lepski,et al.  Upper functions for positive random functionals. II. Application to the empirical processes theory, Part 2 , 2013 .

[34]  F. Comtea,et al.  Anisotropic adaptive kernel deconvolution , 2013 .

[35]  A. V. Goldenshluger,et al.  General Selection Rule from a Family of Linear Estimators , 2013 .

[36]  O. Lepski Upper functions for positive random functionals. I. General setting and Gaussian random functions , 2013 .

[37]  O. Lepski Adaptive estimation over anisotropic functional classes via oracle approach , 2014, 1405.4504.

[38]  Franck Grammont,et al.  Goodness-of-Fit Tests and Nonparametric Adaptive Estimation for Spike Train Analysis , 2014, Journal of mathematical neuroscience.

[39]  N. Klutchnikoff Pointwise adaptive estimation of a multivariate function , 2014 .

[40]  Upper functions for $\mathbb{L}_{p}$-norms of Gaussian random fields , 2016 .

[41]  Structural adaptive deconvolution under $${\mathbb{L}_p}$$-losses , 2016 .

[42]  O. Lepski,et al.  Lower bounds in the convolution structure density model , 2017 .

[43]  L. Birge,et al.  A new method for estimation and model selection:$$\rho $$ρ-estimation , 2014, 1403.6057.

[44]  B. Knapik,et al.  A general approach to posterior contraction in nonparametric inverse problems , 2014, Bernoulli.