The Transition From Weak to Strong Diffuse Radar Bistatic Scattering From Rough Ocean Surface

Many of the currently used models of scattering from a rough ocean surface are designed for the regime of strong diffuse scattering that takes place at large Rayleigh parameter <inline-formula> <tex-math notation="LaTeX">$\it R_{a}$ </tex-math></inline-formula>. Using them for the case of weak, or even moderate diffuse scattering that is characterized by <inline-formula> <tex-math notation="LaTeX">$\it R_{a} \lesssim 1$ </tex-math></inline-formula> would lead to an incorrect result. At the same time, for practical applications, it is important to describe the transition from partially coherent scattering to completely noncoherent, strong diffuse scattering in terms of the bistatic radar cross section <inline-formula> <tex-math notation="LaTeX">$\sigma _{0}$ </tex-math></inline-formula>. This situation may occur for scattering of global navigation satellite system (GNSS) signals or other signals of opportunity from a rough ocean surface under weak winds, or from ice. In this paper, we obtain an expression for <inline-formula> <tex-math notation="LaTeX">$\sigma _{0}$ </tex-math></inline-formula> for the case of weak-to-moderate diffuse scattering using a formulation based on the small slope approximation of the first order. For a reasonable range of <inline-formula> <tex-math notation="LaTeX">$\it R_{a}$ </tex-math></inline-formula>, calculations can be quickly performed using standard desktop computers. We demonstrate results of such calculations for bistatic radar scattering for <inline-formula> <tex-math notation="LaTeX">$L$ </tex-math></inline-formula>-band at low-to-moderate <inline-formula> <tex-math notation="LaTeX">$\it R_{a}$ </tex-math></inline-formula> and its transition to <inline-formula> <tex-math notation="LaTeX">$\sigma _{0}$ </tex-math></inline-formula> at large values of <inline-formula> <tex-math notation="LaTeX">$\it R_{a}$ </tex-math></inline-formula>.

[1]  Valery U. Zavorotny,et al.  Full-Polarization Modeling of Monostatic and Bistatic Radar Scattering From a Rough Sea Surface , 2014, IEEE Transactions on Antennas and Propagation.

[2]  Martin Unwin,et al.  Detection and Processing of bistatically reflected GPS signals from low Earth orbit for the purpose of ocean remote sensing , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[3]  Valery U. Zavorotny,et al.  Scattering of GPS signals from the ocean with wind remote sensing application , 2000, IEEE Trans. Geosci. Remote. Sens..

[4]  C. Guérin,et al.  A critical survey of approximate scattering wave theories from random rough surfaces , 2004 .

[5]  A. K. Fung,et al.  Incoherent bistatic scattering from the sea surface at L-band , 2001, IEEE Trans. Geosci. Remote. Sens..

[6]  Kamal Sarabandi,et al.  Microwave Radar and Radiometric Remote Sensing , 2013 .

[7]  C. Zuffada,et al.  Polarization properties of the GPS signal scattered off a wind-driven ocean , 2004, IEEE Transactions on Antennas and Propagation.

[8]  Donald E. Barrick,et al.  First-order theory and analysis of MF/HF/VHF scatter from the sea , 1972 .

[9]  Adriano Camps,et al.  Sea Ice Detection Using U.K. TDS-1 GNSS-R Data , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[10]  A. Voronovich,et al.  Theoretical model for scattering of radar signals in K u - and C-bands from a rough sea surface with breaking waves , 2001 .

[11]  Adriano Camps,et al.  Tutorial on Remote Sensing Using GNSS Bistatic Radar of Opportunity , 2014, IEEE Geoscience and Remote Sensing Magazine.

[12]  Randall Rose,et al.  New Ocean Winds Satellite Mission to Probe Hurricanes and Tropical Convection , 2016 .

[13]  Jeffrey Ouellette,et al.  Polarization Features in Bistatic Scattering From Rough Surfaces , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[14]  K. Katsaros,et al.  A Unified Directional Spectrum for Long and Short Wind-Driven Waves , 1997 .