Preparation of Pt catalysts decorated TiO2 nanotube arrays by redox replacement of Ni precursors for proton exchange membrane fuel cells

[1]  Pei Kang Shen,et al.  A Highly Order‐Structured Membrane Electrode Assembly with Vertically Aligned Carbon Nanotubes for Ultra‐Low Pt Loading PEM Fuel Cells , 2011 .

[2]  Jun Chen,et al.  Integrated High‐Efficiency Pt/Carbon Nanotube Arrays for PEM Fuel Cells , 2011 .

[3]  Si-Jin Kim,et al.  3-Dimensional TiO2 nanostructure supports and their improved electrochemical properties in methanol electrooxidation , 2011 .

[4]  Chengcheng Li,et al.  Sensitive determination of dopamine in the presence of uric acid and ascorbic acid using TiO2 nanotubes modified with Pd, Pt and Au nanoparticles. , 2011, The Analyst.

[5]  P. Schmuki,et al.  Highly uniform Pt nanoparticle decoration on TiO2 nanotube arrays: A refreshable platform for methanol electrooxidation , 2011 .

[6]  Y. Wang,et al.  The electrochemical oxidation of methanol on a Pt/TNTs/Ti electrode enhanced by illumination , 2011 .

[7]  S. Dong,et al.  Pt modified TiO2 nanotubes electrode: Preparation and electrocatalytic application for methanol oxidation , 2010 .

[8]  B. Popov,et al.  Titania Supported Platinum Catalyst with High Electrocatalytic Activity and Stability for Polymer Electrolyte Membrane Fuel Cell , 2010, ECS Transactions.

[9]  G. Wallace,et al.  Novel ACNT arrays based MEA structure-nano-Pt loaded ACNT/Nafion/ACNT for fuel cell applications. , 2010, Chemical communications.

[10]  W. Smyrl,et al.  Electrochemical Characterization and Durability of Sputtered Pt Catalysts on TiO2 Nanotube Arrays as a Cathode Material for PEFCs , 2010 .

[11]  A. Hubin,et al.  Methanol Oxidation at Pt−Cu, Pt−Ni, and Pt−Co Electrode Coatings Prepared by a Galvanic Replacement Process , 2010 .

[12]  Robert E. Rettew,et al.  Layer-by-Layer Pt Growth on Polycrystalline Au: Surface-Limited Redox Replacement of Overpotentially Deposited Ni Monolayers , 2009 .

[13]  B. Popov,et al.  Development of a titanium dioxide-supported platinum catalyst with ultrahigh stability for polymer electrolyte membrane fuel cell applications. , 2009, Journal of the American Chemical Society.

[14]  W. Smyrl,et al.  Electrochemical Durability Investigation of Pt / TiO2 Nanotube Catalysts for Polymer Electrolyte Membrane Fuel Cells , 2009 .

[15]  M. Chandrasekar,et al.  Morphology and texture of pulse plated zinc–cobalt alloy , 2009 .

[16]  W. Smyrl,et al.  Synthesis of Pt / TiO2 Nanotube Catalysts for Cathodic Oxygen Reduction , 2008 .

[17]  J. Chao,et al.  Effect of calcination temperature on the structure of a Pt/TiO2 (B) nanofiber and its photocatalytic activity in generating H2. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[18]  G. Ozin,et al.  Synergy of slow photon and chemically amplified photochemistry in platinum nanocluster-loaded inverse titania opals. , 2008, Journal of the American Chemical Society.

[19]  M. Chandrasekar,et al.  Pulse and pulse reverse plating—Conceptual,advantages and applications , 2008 .

[20]  Lixia Yang,et al.  Fabrication and catalytic properties of Pt and Ru decorated TiO2\CNTs catalyst for methanol electrooxidation , 2007 .

[21]  T. Hyeon,et al.  Simultaneous phase- and size-controlled synthesis of TiO(2) nanorods via non-hydrolytic sol-gel reaction of syringe pump delivered precursors. , 2006, The journal of physical chemistry. B.

[22]  Mark K. Debe,et al.  High voltage stability of nanostructured thin film catalysts for PEM fuel cells , 2006 .

[23]  H. Zeng,et al.  Preparation of Monodisperse Au/TiO 2 Nanocatalysts via Self-Assembly , 2006 .

[24]  Z. Pan,et al.  Ultrastable Au nanocatalyst supported on surface-modified TiO2 nanocrystals. , 2005, Journal of the American Chemical Society.

[25]  Shimshon Gottesfeld,et al.  High Performance Catalyzed Membranes of Ultra‐low Pt Loadings for Polymer Electrolyte Fuel Cells , 1992 .

[26]  Shimshon Gottesfeld,et al.  Thin-film catalyst layers for polymer electrolyte fuel cell electrodes , 1992 .