Three‐Dimensional Simulation of Equatorial Spread F: Effects of Field‐Aligned Plasma Flow and Ionospheric Conductivity

Recently a Three‐dimensional EquatoriaL spread F (TELF) model using high‐resolving power advection schemes have been developed at the University of Science and Technology of China. With the inclusion of the field‐aligned plasma flow and realistic ionospheric conductivity configuration, the TELF model reproduced typical features of the observed equatorial spread F (ESF) phenomena, including plasma depletions along flux tubes, geomagnetic conjugate irregularities, and ESF morphology as seen in ground optical and satellite observations. Through control simulations, the effects of field‐aligned plasma flow and ionospheric conductivity on ESF are investigated. It is found that field‐aligned plasma flow could inhibit the growth of bubbles by modulating the ionospheric conductivity distribution along field lines, and the plasma bubbles from the TELF model behave more physically in the topside F‐region than those from the 2D model due to the realistic ionospheric conductivity specification. Additionally, the simulations demonstrate that the amplitude and altitude of the initial perturbations can also affect the growth rate of ESF by modulating the polarization electric fields.

[1]  J. Huba Generalized Rayleigh‐Taylor Instability: Ion Inertia, Acceleration Forces, and E Region Drivers , 2022, Journal of Geophysical Research: Space Physics.

[2]  J. Lei,et al.  Numerical Considerations in the Simulation of Equatorial Spread F , 2021, Journal of Geophysical Research: Space Physics.

[3]  J. Huba Theory and Modeling of Equatorial Spread F , 2021 .

[4]  J. Huba,et al.  Global Modeling of Equatorial Spread F with SAMI3/WACCM‐X , 2020, Geophysical Research Letters.

[5]  Michael Wiltberger,et al.  GAMERA: A Three-dimensional Finite-volume MHD Solver for Non-orthogonal Curvilinear Geometries , 2018, The Astrophysical Journal Supplement Series.

[6]  Libo Liu,et al.  A brief review of equatorial ionization anomaly and ionospheric irregularities , 2018 .

[7]  Mamoru Yamamoto,et al.  Vertical rise velocity of equatorial plasma bubbles estimated from Equatorial Atmosphere Radar (EAR) observations and HIRB model simulations , 2017 .

[8]  Bodo W. Reinisch,et al.  International Reference Ionosphere 2016: From ionospheric climate to real‐time weather predictions , 2017 .

[9]  A. Richmond Ionospheric Electrodynamics , 2016 .

[10]  J. Makela,et al.  Electrostatic reconnection in the ionosphere , 2015 .

[11]  T. Yokoyama,et al.  Nonlinear growth, bifurcation, and pinching of equatorial plasma bubble simulated by three‐dimensional high‐resolution bubble model , 2014 .

[12]  A. Patra,et al.  Vertical ExB drifts from radar and C/NOFS observations in the Indian and Indonesian sectors: Consistency of observations and model , 2014 .

[13]  J. Huba,et al.  Numerical Methods in Modeling the Ionosphere , 2014 .

[14]  J. Huba,et al.  Impact of meridional winds on equatorial spread F: Revisited , 2013 .

[15]  D. Fritts,et al.  On the seeding of equatorial spread F by gravity waves , 2013 .

[16]  A. Brekke Currents in the ionosphere , 2013 .

[17]  R. Strangeway The equivalence of Joule dissipation and frictional heating in the collisional ionosphere , 2012 .

[18]  J. Retterer Forecasting low-latitude radio scintillation with 3-D ionospheric plume models: 1. Plume model , 2010 .

[19]  J. Huba,et al.  Three‐dimensional equatorial spread F modeling: Zonal neutral wind effects , 2009 .

[20]  S. Zalesak,et al.  Three-dimensional simulation of equatorial spread-F with meridional wind effects , 2009 .

[21]  J. Huba,et al.  Three‐dimensional equatorial spread F modeling , 2008 .

[22]  M. Mendillo,et al.  Equatorial spread F‐related airglow depletions at Arecibo and conjugate observations , 2007 .

[23]  Y. Sahai,et al.  Significant depletions of the ionospheric plasma density at middle latitudes: A possible signature of equatorial spread F bubbles near the plasmapause , 2007 .

[24]  J. Huba,et al.  Equatorial spread F modeling: Multiple bifurcated structures, secondary instabilities, large density ‘bite‐outs,’ and supersonic flows , 2007 .

[25]  M. Mendillo,et al.  Imaging science at El Leoncito, Argentina , 2006 .

[26]  Georgios Balasis,et al.  Magnetic signatures of equatorial spread F as observed by the CHAMP satellite , 2006 .

[27]  Kunihiko Watanabe,et al.  A note on the dipole coordinates , 2004, Comput. Geosci..

[28]  J. Huba,et al.  Hall Magnetohydrodynamics - A Tutorial , 2003 .

[29]  D. Drob,et al.  Nrlmsise-00 Empirical Model of the Atmosphere: Statistical Comparisons and Scientific Issues , 2002 .

[30]  Tadahiko Ogawa,et al.  Geomagnetic conjugate observations of equatorial airglow depletions , 2002 .

[31]  Bodo W. Reinisch,et al.  International Reference Ionosphere 2000 , 2001 .

[32]  Glenn Joyce,et al.  Sami2 is Another Model of the Ionosphere (SAMI2): A new low-latitude ionosphere model , 2000 .

[33]  David L. Hysell,et al.  An overview and synthesis of plasma irregularities in equatorial spread F , 2000 .

[34]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..

[35]  R. Heelis,et al.  Fast equatorial bubbles , 1997 .

[36]  P. J. Sultan,et al.  Linear theory and modeling of the Rayleigh‐Taylor instability leading to the occurrence of equatorial spread F , 1996 .

[37]  Susan K. Avery,et al.  Empirical wind model for the upper, middle and lower atmosphere , 1996 .

[38]  M. Kelley,et al.  Nonlinear evolution of equatorial spread F: 2. Gravity wave seeding of Rayleigh‐Taylor instability , 1996 .

[39]  D. T. Farley,et al.  VHF radar and rocket observations of equatorial spread F on Kwajalein , 1994 .

[40]  David L. Hysell,et al.  Nonlinear Rayleigh-Taylor instabilities, atmospheric gravity waves and equatorial spread F , 1993 .

[41]  W. J. Burke,et al.  Equatorial bubbles updrafting at supersonic speeds , 1992 .

[42]  J. Saba,et al.  Electric field observations of equatorial bubbles , 1992 .

[43]  G. Haerendel,et al.  Theory for modeling the equatorial evening ionosphere and the origin of the shear in the horizontal plasma flow , 1992 .

[44]  Sidney L. Ossakow,et al.  Nonlinear equatorial spread F: The effect of neutral winds and background Pedersen conductivity , 1982 .

[45]  Michael C. Kelley,et al.  A review of recent observations of equatorial scintillations and their relationship to current theories of F region irregularity generation , 1979 .

[46]  K. Hain The partial donor cell method , 1978 .

[47]  Anthony J. Scannapieco,et al.  Nonlinear equatorial spread F , 1976 .

[48]  J. W. Dungey,et al.  Convective diffusion in the equatorial F region , 1956 .

[49]  E. Appleton,et al.  Two Anomalies in the Ionosphere , 1946, Nature.

[50]  S.,et al.  Nonlinear Equatorial Spread F : Spatially Large Bubbles Resulting from Large Horizontal Scale Initial Perturbations , 2022 .