Optimal Hinfinity filtering in networked control systems with multiple packet dropouts

Abstract This paper studies the problem of H ∞ filtering in networked control systems (NCSs) with multiple packet dropouts. A new formulation enables us to assign separate dropout rates from the sensors to the controller and from the controller to the actuators. By employing the new formulation, random dropout rates are transformed into stochastic parameters in the system’s representation. A generalized H ∞ -norm for systems with stochastic parameters and both stochastic and deterministic inputs is derived. The stochastic H ∞ -norm of the filtering error is used as a criterion for filter design in the NCS framework. A set of linear matrix inequalities (LMIs) is given to solve the corresponding filter design problem. A simulation example supports the theory.

[1]  T. Morozan Stabilization of some stochastic discrete–time control systems , 1983 .

[2]  Maurício C. de Oliveira,et al.  H[sub 2] and Hinfinity Robust Filtering for Discrete-Time Linear Systems , 2000, SIAM J. Control. Optim..

[3]  Fuwen Yang,et al.  Robust H/sub /spl infin// filtering for stochastic time-delay systems with missing measurements , 2006, IEEE Transactions on Signal Processing.

[4]  Qiang Ling,et al.  Power spectral analysis of networked control systems with data dropouts , 2004, IEEE Transactions on Automatic Control.

[5]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[6]  Sirish L. Shah,et al.  Optimal H2 filtering with random sensor delay, multiple packet dropout and uncertain observations , 2007, Int. J. Control.

[7]  Bruce A. Francis,et al.  Optimal Sampled-Data Control Systems , 1996, Communications and Control Engineering Series.

[8]  Fuchun Sun,et al.  Optimal controller design for a class of networked control systems , 2005, Fifth International Conference on Hybrid Intelligent Systems (HIS'05).

[9]  João Pedro Hespanha,et al.  A Survey of Recent Results in Networked Control Systems , 2007, Proceedings of the IEEE.

[10]  C. Hadjicostis,et al.  Stabilisation with feedback control utilising packet-dropping network links , 2007 .

[11]  Johan Nilsson,et al.  Analysis and Design of Real-Time Systems with Random Delays , 1996 .

[12]  K. Furuta,et al.  An algebraic approach to discrete-time H∞ control problems , 1990, 1990 American Control Conference.

[13]  Tongwen Chen,et al.  Optimal ${\cal H}_{2}$ Filtering in Networked Control Systems With Multiple Packet Dropout , 2007, IEEE Transactions on Automatic Control.

[14]  Wang Haiqing,et al.  Survey on the performance analysis of networked control systems , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).

[15]  P. Gahinet,et al.  A linear matrix inequality approach to H∞ control , 1994 .

[16]  Pedro Luis Dias Peres,et al.  Optimal filtering schemes for linear discrete-time systems: a linear matrix inequality approach , 1998, Int. J. Syst. Sci..

[17]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[18]  Tai C Yang,et al.  Networked control system: a brief survey , 2006 .

[19]  Fuwen Yang,et al.  H∞ control for networked systems with random communication delays , 2006, IEEE Trans. Autom. Control..

[20]  D. Hinrichsen,et al.  H∞-type control for discrete-time stochastic systems , 1999 .

[21]  Lihua Xie,et al.  On the Discrete-time Bounded Real Lemma with application in the characterization of static state feedback H ∞ controllers , 1992 .

[22]  Dong Yue,et al.  STATE FEEDBACK CONTROLLER DESIGN OF NETWORKED CONTROL SYSTEMS WITH PARAMETER UNCERTAINTY AND STATE‐DELAY , 2006 .