Effect of diurnal variation of aerosols on surface reaching solar radiation

[1]  S. Lal,et al.  SO2 measurements at a high altitude site in the central Himalayas: Role of regional transport , 2014 .

[2]  T. Sarangi,et al.  First simultaneous measurements of ozone, CO, and NOy at a high‐altitude regional representative site in the central Himalayas , 2014 .

[3]  Y. N. Ahammed,et al.  Aerosol vertical profiles strongly affect their radiative forcing uncertainties: study by using ground-based lidar and other measurements , 2013 .

[4]  Chien Wang Impact of anthropogenic absorbing aerosols on clouds and precipitation: A review of recent progresses , 2013 .

[5]  Costas A. Varotsos,et al.  An observational study of the atmospheric ultra-fine particle dynamics , 2012 .

[6]  S. Lal,et al.  Influences of the boundary layer evolution on surface ozone variations at a tropical rural site in India , 2012, Journal of Earth System Science.

[7]  T. Petäjä,et al.  Radiative Absorption Enhancements Due to the Mixing State of Atmospheric Black Carbon , 2012, Science.

[8]  Sachchidanand Singh,et al.  Characteristics of black carbon over Delhi and Manora Peak—a comparative study , 2012 .

[9]  T. Kirchstetter,et al.  Black-carbon reduction of snow albedo , 2012 .

[10]  P. Pant,et al.  Black carbon aerosols over Manora Peak in the Indian Himalayan foothills: implications for climate forcing , 2012 .

[11]  Michael Flynn,et al.  Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the United Kingdom , 2011 .

[12]  M. Sarin,et al.  Long-term record of aerosol optical properties and chemical composition from a high-altitude site (Manora Peak) in Central Himalaya , 2010 .

[13]  Costas A. Varotsos,et al.  On the corrosion and soiling effects on materials by air pollution in Athens, Greece , 2010 .

[14]  V. Vinoj,et al.  Radiative effects of aerosols at an urban location in southern India: Observations versus model , 2010 .

[15]  K. Sellegri,et al.  Aerosol mass and black carbon concentrations, a two year record at NCO-P (5079 m, Southern Himalayas) , 2010 .

[16]  D. Koch,et al.  Black carbon semi-direct effects on cloud cover: review and synthesis , 2010 .

[17]  A. Panicker,et al.  On the contribution of black carbon to the composite aerosol radiative forcing over an urban environment , 2010 .

[18]  J. Roger,et al.  Aerosol optical properties and radiative forcing in the high Himalaya based on measurements at the Nepal Climate Observatory-Pyramid site (5079 m a.s.l.) , 2010 .

[19]  R. Sagar,et al.  Characteristics of aerosol black carbon mass concentration over a high altitude location in the Central Himalayas from multi-year measurements , 2010 .

[20]  Achuthan Jayaraman,et al.  Absorbing aerosols: contribution of biomass burning and implications for radiative forcing , 2010 .

[21]  C. Varotsos,et al.  Forest fires pollution impact on the solar UV irradiance at the ground. , 2009 .

[22]  Jean-Claude Roger,et al.  One year measurements of aerosol optical properties over an urban coastal site: Effect on local direct radiative forcing , 2008 .

[23]  R. Sagar,et al.  Physical and optical characteristics of atmospheric aerosols during ICARB at Manora Peak, Nainital: A sparsely inhabited, high-altitude location in the Himalayas , 2008 .

[24]  Costas A. Varotsos,et al.  Tropospheric aerosol forcing of climate: a case study for the greater area of Greece , 2008 .

[25]  K. Krishna Moorthy,et al.  Surface changes in solar irradiance due to aerosols over central Himalayas , 2006 .

[26]  Portable lidar system for atmospheric boundary layer measurements , 2006 .

[27]  V. Vinoj,et al.  New Directions: How representative are aerosol radiative impact assessments? , 2006 .

[28]  Igor A. Podgorny,et al.  The direct observations of large aerosol radiative forcing in the Himalayan region , 2004 .

[29]  Influence of aerosol and atmospheric gases on ultraviolet radiation in different optical conditions including smoky mist of 2002 , 2004 .

[30]  R. Sagar,et al.  Characteristics of aerosol spectral optical depths over Manora Peak: A high‐altitude station in the central Himalayas , 2003, physics/0306043.

[31]  Yoram J. Kaufman,et al.  Analysis of the performance characteristics of the five-channel Microtops II Sun photometer for measuring aerosol optical thickness and precipitable water vapor , 2002 .

[32]  F. Mims,et al.  Design, calibration, and performance of MICROTOPS II handheld ozone monitor and Sun photometer , 2001 .

[33]  John N. Porter,et al.  Ship-Based Sun Photometer Measurements Using Microtops Sun Photometers , 2001 .

[34]  M. Jacobson,et al.  Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols , 2022 .

[35]  V. Ramanathan,et al.  Reduction of tropical cloudiness by soot , 2000, Science.

[36]  Catherine Gautier,et al.  SBDART: A Research and Teaching Software Tool for Plane-Parallel Radiative Transfer in the Earth's Atmosphere. , 1998 .

[37]  P. Koepke,et al.  Optical Properties of Aerosols and Clouds: The Software Package OPAC , 1998 .

[38]  B. A. Bodhaine,et al.  Aerosol absorption measurements at Barrow, Mauna Loa and the south pole , 1995 .

[39]  T. Novakov,et al.  The aethalometer — An instrument for the real-time measurement of optical absorption by aerosol particles , 1983 .

[40]  A. Ångström The parameters of atmospheric turbidity , 1964 .