2 Bayesian Analysis for Penalized Spline Regression Using WinBUGS particular cases of Generalized Linear Mixed Models ( GLMMs

Penalized splines can be viewed as BLUPs in a mixed model framework, which allows the use of mixed model software for smoothing. Thus, software originally developed for Bayesian analysis of mixed models can be used for penalized spline regression. Bayesian inference for nonparametric models enjoys the flexibility of nonparametric models and the exact inference provided by the Bayesian inferential machinery. This paper provides a simple, yet comprehensive, set of programs for the implementation of nonparametric Bayesian analysis in WinBUGS. Good mixing properties of the MCMC chains are obtained by using low-rank thin-plate splines, while simulation times per iteration are reduced employing WinBUGS specific computational tricks.

[1]  David Ruppert,et al.  Variable Selection and Function Estimation in Additive Nonparametric Regression Using a Data-Based Prior: Comment , 1999 .

[2]  M. C. Jones,et al.  Spline Smoothing and Nonparametric Regression. , 1989 .

[3]  B. Silverman,et al.  Nonparametric regression and generalized linear models , 1994 .

[4]  R. Kass,et al.  Reference Bayesian Methods for Generalized Linear Mixed Models , 2000 .

[5]  P. Diggle,et al.  Analysis of Longitudinal Data. , 1997 .

[6]  R. Tibshirani,et al.  Generalized Additive Models , 1991 .

[7]  Jery R. Stedinger,et al.  Improving MCMC Mixing for a GLMM Describing Pathogen Concentrations in Water Supplies , 2002 .

[8]  A. Gelfand,et al.  Efficient parametrisations for normal linear mixed models , 1995 .

[9]  M. Wand,et al.  Semiparametric Regression: Parametric Regression , 2003 .

[10]  Matthew P. Wand,et al.  Kernel Smoothing , 1995 .

[11]  Scott M. Berry,et al.  Bayesian Smoothing and Regression Splines for Measurement Error Problems , 2002 .

[12]  Paul H. C. Eilers,et al.  Flexible smoothing with B-splines and penalties , 1996 .

[13]  M. C. Jones,et al.  Model-Free Curve Estimation , 1993 .

[14]  A. Gelman Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper) , 2004 .

[15]  Sujit K. Ghosh,et al.  Essential Wavelets for Statistical Applications and Data Analysis , 2001, Technometrics.

[16]  M. Hansen,et al.  Spline Adaptation in Extended Linear Models , 1998 .

[17]  Yuedong Wang Mixed effects smoothing spline analysis of variance , 1998 .

[18]  D. Ruppert,et al.  Likelihood ratio tests in linear mixed models with one variance component , 2003 .

[19]  Matt P. Wand,et al.  Smoothing and mixed models , 2003, Comput. Stat..

[20]  Grace Wahba,et al.  Spline Models for Observational Data , 1990 .

[21]  Ciprian M. Crainiceanu,et al.  Restricted Likelihood Ratio Tests in Nonparametric Longitudinal Models Short title: Restricted LR Tests in Longitudinal Models , 2004 .

[22]  Andrew Gelman,et al.  R2WinBUGS: A Package for Running WinBUGS from R , 2005 .

[23]  H. Müller,et al.  Local Polynomial Modeling and Its Applications , 1998 .

[24]  D. Ruppert Selecting the Number of Knots for Penalized Splines , 2002 .

[25]  M. Wand,et al.  Smoothing with Mixed Model Software , 2004 .

[26]  Jerome H. Friedman Multivariate adaptive regression splines (with discussion) , 1991 .

[27]  Robert Fildes,et al.  The practice of econometrics: Classical and contemporary: Ernst R. Berndt, (Addison-Wesley Publishing company, Reading, Mass., 1991), pp. 702, $18.95 , 1992 .