Underwater locomotion from oscillatory shape deformations

This paper considers underwater propulsion that is generated by variations in body shape. We summarize and extend some of the emerging approaches for the uniform modeling and control of such underactuated systems. Two examples illustrate these ideas.

[1]  James P. Ostrowski,et al.  Motion planning for dynamic eel-like robots , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[2]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[3]  F. Verhulst,et al.  Averaging Methods in Nonlinear Dynamical Systems , 1985 .

[4]  Francesco Bullo,et al.  Averaging and Vibrational Control of Mechanical Systems , 2002, SIAM J. Control. Optim..

[5]  Naomi Ehrich Leonard,et al.  Controllability and motion algorithms for underactuated Lagrangian systems on Lie groups , 2000, IEEE Trans. Autom. Control..

[6]  Naomi Ehrich Leonard Periodic forcing, dynamics and control of underactuated spacecraft and underwater vehicles , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[7]  Joel W. Burdick,et al.  Propulsion and control of deformable bodies in an ideal fluid , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[8]  Richard M. Murray,et al.  Nonholonomic control systems: from steering to stabilization with sinusoids , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[9]  A. D. Lewis,et al.  Configuration Controllability of Simple Mechanical Control Systems , 1997 .

[10]  P.A. Vela,et al.  Second order averaging methods for oscillatory control of underactuated mechanical systems , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[11]  P. Krishnaprasad,et al.  Nonholonomic mechanical systems with symmetry , 1996 .

[12]  Joel W. Burdick,et al.  Second order averaging methods and oscillatory feedback control of underactuated mechanical systems , 2002 .

[13]  Joel W. Burdick,et al.  Experiments in carangiform robotic fish locomotion , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[14]  Joel W. Burdick,et al.  Construction and Modelling of a Carangiform Robotic Fish , 1999, ISER.

[15]  Joel W. Burdick,et al.  Nonlinear control methods for planar carangiform robot fish locomotion , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[16]  Joel W. Burdick,et al.  Trajectory stabilization for a planar carangiform robot fish , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[17]  Wensheng Liu,et al.  An Approximation Algorithm for Nonholonomic Systems , 1997 .

[18]  Eduardo D. Sontag,et al.  Time-optimal control of manipulators , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[19]  A. Bloch,et al.  Control and stabilization of nonholonomic dynamic systems , 1992 .

[20]  Pascal Morin,et al.  Design of Homogeneous Time-Varying Stabilizing Control Laws for Driftless Controllable Systems Via Oscillatory Approximation of Lie Brackets in Closed Loop , 1999, SIAM J. Control. Optim..

[21]  Joel W. Burdick,et al.  Modelling and experimental investigation of carangiform locomotion for control , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[22]  S. Sastry,et al.  Nonholonomic motion planning: steering using sinusoids , 1993, IEEE Trans. Autom. Control..