Heterojunction oxide thin-film transistors with unprecedented electron mobility grown from solution

Engineering of solution-grown metal oxide heterointerfaces presents an alternative strategy for thin-film transistor development. Thin-film transistors made of solution-processed metal oxide semiconductors hold great promise for application in the emerging sector of large-area electronics. However, further advancement of the technology is hindered by limitations associated with the extrinsic electron transport properties of the often defect-prone oxides. We overcome this limitation by replacing the single-layer semiconductor channel with a low-dimensional, solution-grown In2O3/ZnO heterojunction. We find that In2O3/ZnO transistors exhibit band-like electron transport, with mobility values significantly higher than single-layer In2O3 and ZnO devices by a factor of 2 to 100. This marked improvement is shown to originate from the presence of free electrons confined on the plane of the atomically sharp heterointerface induced by the large conduction band offset between In2O3 and ZnO. Our finding underscores engineering of solution-grown metal oxide heterointerfaces as an alternative strategy to thin-film transistor development and has the potential for widespread technological applications.

[1]  G. Tröster,et al.  Metal oxide semiconductor thin-film transistors for flexible electronics , 2016 .

[2]  Stuart R. Thomas,et al.  Al‐Doped ZnO Transistors Processed from Solution at 120 °C , 2016 .

[3]  Xinge Yu,et al.  Metal oxides for optoelectronic applications. , 2016, Nature materials.

[4]  M. McLachlan,et al.  Energy Quantization in Solution‐Processed Layers of Indium Oxide and Their Application in Resonant Tunneling Diodes , 2016 .

[5]  T. Anthopoulos,et al.  Exploring Two-Dimensional Transport Phenomena in Metal Oxide Heterointerfaces for Next-Generation, High-Performance, Thin-Film Transistor Technologies. , 2015, Small.

[6]  E. Kymakis,et al.  High Electron Mobility Thin‐Film Transistors Based on Solution‐Processed Semiconducting Metal Oxide Heterojunctions and Quasi‐Superlattices , 2015, Advanced science.

[7]  Xinge Yu,et al.  Ultra‐Flexible, “Invisible” Thin‐Film Transistors Enabled by Amorphous Metal Oxide/Polymer Channel Layer Blends , 2015, Advanced materials.

[8]  Stuart R. Thomas,et al.  Signatures of Quantized Energy States in Solution‐Processed Ultrathin Layers of Metal‐Oxide Semiconductors and Their Devices , 2015 .

[9]  Stuart R. Thomas,et al.  Indium oxide thin-film transistors processed at low temperature via ultrasonic spray pyrolysis. , 2015, ACS applied materials & interfaces.

[10]  Hyun Jae Kim,et al.  Direct light pattern integration of low-temperature solution-processed all-oxide flexible electronics. , 2014, ACS nano.

[11]  B. Bae,et al.  Improved electrical performance and bias stability of solution-processed active bilayer structure of indium zinc oxide based TFT. , 2014, ACS applied materials & interfaces.

[12]  Yang Yang,et al.  Boost Up Mobility of Solution‐Processed Metal Oxide Thin‐Film Transistors via Confining Structure on Electron Pathways , 2014, Advanced materials.

[13]  Seokhyun Yoon,et al.  Review of solution-processed oxide thin-film transistors , 2014 .

[14]  A. Ohtomo,et al.  Surface and interface engineering of ZnO based heterostructures fabricated by pulsed-laser deposition , 2014 .

[15]  Sang Yeol Lee,et al.  Artificial semiconductor/insulator superlattice channel structure for high-performance oxide thin-film transistors , 2013, Scientific Reports.

[16]  Xinge Yu,et al.  Synergistic approach to high-performance oxide thin film transistors using a bilayer channel architecture. , 2013, ACS applied materials & interfaces.

[17]  Stuart R. Thomas,et al.  Solution-processable metal oxide semiconductors for thin-film transistor applications. , 2013, Chemical Society reviews.

[18]  Vinod Kumar,et al.  Origin of the red emission in zinc oxide nanophosphors , 2013 .

[19]  Shinhyuk Yang,et al.  An ‘aqueous route’ for the fabrication of low-temperature-processable oxide flexible transparent thin-film transistors on plastic substrates , 2013 .

[20]  A. R. Daud,et al.  XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods , 2013 .

[21]  Jian-Zhang Chen,et al.  MgZnO/ZnO Heterostructure Field-Effect Transistors Fabricated by RF-Sputtering , 2013 .

[22]  B. Bae,et al.  Thiol-Ene Reaction Derived Sol-Gel Hybrid Dielectric Layer for Oragnic Thin Film Transistors , 2013 .

[23]  A. Kahn,et al.  Transition Metal Oxides for Organic Electronics: Energetics, Device Physics and Applications , 2012, Advanced materials.

[24]  Yong-Young Noh,et al.  Flexible metal-oxide devices made by room-temperature photochemical activation of sol–gel films , 2012, Nature.

[25]  You Seung Rim,et al.  The Effects of Dual-Active-Layer Modulation on a Low-Temperature Solution-Processed Oxide Thin-Film Transistor , 2012, IEEE Transactions on Electron Devices.

[26]  Dong Lim Kim,et al.  Low-Temperature Solution Processing of AlInZnO/InZnO Dual-Channel Thin-Film Transistors , 2011, IEEE Electron Device Letters.

[27]  U-In Chung,et al.  Trap-limited and percolation conduction mechanisms in amorphous oxide semiconductor thin film transistors , 2011 .

[28]  M. Kanatzidis,et al.  Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. , 2011, Nature materials.

[29]  Jae‐Hyung Jang,et al.  High Performance MOCVD-Grown ZnO Thin-Film Transistor with a Thin MgZnO Layer at Channel/Gate Insulator Interface , 2010 .

[30]  Stuart R. Thomas,et al.  Spray‐Deposited Li‐Doped ZnO Transistors with Electron Mobility Exceeding 50 cm2/Vs , 2010, Advanced materials.

[31]  I-Chun Cheng,et al.  Two dimensional electron gases in polycrystalline MgZnO/ZnO heterostructures grown by rf-sputtering process , 2010 .

[32]  Changjung Kim,et al.  Low-Frequency Noise Performance of a Bilayer InZnO–InGaZnO Thin-Film Transistor for Analog Device Applications , 2010, IEEE Electron Device Letters.

[33]  A. Facchetti,et al.  High‐Performance Flexible Transparent Thin‐Film Transistors Using a Hybrid Gate Dielectric and an Amorphous Zinc Indium Tin Oxide Channel , 2010, Advanced materials.

[34]  T. Kamiya,et al.  Electronic Structures Above Mobility Edges in Crystalline and Amorphous In-Ga-Zn-O: Percolation Conduction Examined by Analytical Model , 2009, Journal of Display Technology.

[35]  Anderson Janotti,et al.  Fundamentals of zinc oxide as a semiconductor , 2009 .

[36]  Atsuo Yamada,et al.  Polarization-induced two-dimensional electron gases in ZnMgO/ZnO heterostructures , 2008 .

[37]  G. Verzellesi,et al.  Reliability of GaN High-Electron-Mobility Transistors: State of the Art and Perspectives , 2008, IEEE Transactions on Device and Materials Reliability.

[38]  K. Koike,et al.  Improved Stability of High-Performance ZnO/ZnMgO Hetero-MISFETs , 2007, IEEE Electron Device Letters.

[39]  A. Gonzalez-Elipe,et al.  Effect of visible light on the water contact angles on illuminated oxide semiconductors other than TiO2 , 2006 .

[40]  Atsuo Yamada,et al.  Two-dimensional electron gas in Zn polar ZnMgO∕ZnO heterostructures grown by radical source molecular beam epitaxy , 2006 .

[41]  Weon-Pil Tai,et al.  EFFECT OF PREHEATING TEMPERATURE ON STRUCTURAL AND OPTICAL PROPERTIES OF ZNO THIN FILMS BY SOL–GEL PROCESS , 2005 .

[42]  P. Komninou,et al.  Heteroepitaxial growth of In-face InN on GaN (0001) by plasma-assisted molecular-beam epitaxy , 2005 .

[43]  H. Ohta,et al.  Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors , 2004, Nature.

[44]  S. Chang,et al.  Characterization of InGaN/GaN multi-quantum-well blue-light-emitting diodes grown by metal organic chemical vapor deposition , 2004 .

[45]  P. Saunier,et al.  High-performance double-recessed enhancement-mode metamorphic HEMTs on 4-in GaAs substrates , 2003, IEEE Electron Device Letters.

[46]  H. Ohta,et al.  Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor , 2003, Science.

[47]  Gyu-Chul Yi,et al.  Quantum Confinement Observed in ZnO/ZnMgO Nanorod Heterostructures , 2003 .

[48]  K. Hashimoto,et al.  Photocatalysis and Photoinduced Hydrophilicity of Various Metal Oxide Thin Films , 2002 .

[49]  A. Saidane The Physics of Low-dimensional Semiconductors: An Introduction; J.H. Davies, Cambridge University Press, UK, ISBN 0-521-48491-X, $44.95 , 2000 .

[50]  S. Bernasek,et al.  Surface Characterization and Modification of Indium Tin Oxide in Ultrahigh Vacuum , 2000 .

[51]  T. Drummond,et al.  Modulation-doped GaAs/(Al,Ga)As heterojunction field-effect transistors: MODFETs , 1986, Proceedings of the IEEE.

[52]  R.T. Chen,et al.  Multiple-channel GaAs/AlGaAs high electron mobility transistors , 1985, IEEE Electron Device Letters.

[53]  E. A. Kraut,et al.  Precise Determination of the Valence-Band Edge in X-Ray Photoemission Spectra: Application to Measurement of Semiconductor Interface Potentials , 1980 .

[54]  T. Mimura,et al.  A New Field-Effect Transistor with Selectively Doped GaAs/n-AlxGa1-xAs Heterojunctions , 1980 .

[55]  R. Dingle,et al.  Electron mobilities in modulation‐doped semiconductor heterojunction superlattices , 1978 .

[56]  A. Goodman,et al.  Wetting of thin layers of SiO2 by water , 1974 .

[57]  E. Fortunato,et al.  Oxide Semiconductor Thin‐Film Transistors: A Review of Recent Advances , 2012, Advanced materials.

[58]  Jin-seong Park,et al.  Review of recent developments in amorphous oxide semiconductor thin-film transistor devices , 2012 .

[59]  Margaret King,et al.  State of the art and perspectives , 2004, Machine Translation.