On the Use of Computer Algebra Systems and Enclosure Methods in the Modelling and Optimization of Biotechnological Processes

This survey paper aims to promote certain novel mathematical tools, such as computer algebra systems, enclosure methods and interval analysis, to the mathematical modelling and optimization of biotechnological processes.

[1]  Vladimir M. Veliov,et al.  On the controllability of switching linear systems , 2005, Autom..

[2]  Frank G. Garvan,et al.  The MAPLE Book , 2001 .

[3]  Alex M. Andrew,et al.  Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics , 2002 .

[4]  D. Brown,et al.  Models in Biology: Mathematics, Statistics and Computing , 1995 .

[5]  Dalcidio Moraes Claudio,et al.  On the Approximation of Centered Zonotopes in the Plane , 2003, LSSC.

[6]  Necmettin Yildirim,et al.  Kinetic Analysis of Multi Enzyme Systems: A Case Study of the Closed System of Creatine Kinase, Hexokinase and Glucose 6-Phosphate Dehydrogenase , 2002 .

[7]  Georges Bastin,et al.  Dynamic metabolic modelling under the balanced growth condition , 2004 .

[8]  Richard D. Jenks,et al.  AXIOM: the scientific computation system , 1992 .

[9]  K R Godfrey,et al.  Global identifiability of the parameters of nonlinear systems with specified inputs: a comparison of methods. , 1990, Mathematical biosciences.

[10]  Svetoslav Markov,et al.  On the algebraic Properties of Stochastic Arithmetic. Comparison to Interval Arithmetic , 2001 .

[11]  Y. Akyildiz,et al.  Towards A More Complete Interval Arith-Metic In Mathematica , 1970 .

[12]  Paul Waltman,et al.  The Theory of the Chemostat: Dynamics of Microbial Competition , 1995 .

[13]  Stephen Wolfram,et al.  The Mathematica Book , 1996 .

[14]  Mustafa Bayram,et al.  An analysis of the kinetics of unstable enzymatic systems using MAPLE , 2000, Appl. Math. Comput..

[15]  Svetoslav Markov,et al.  Numerical Study of Algebraic Solutions to Linear Problems Involving Stochastic Parameters , 2005, LSSC.

[16]  M Bayram Computer algebra approaches to enzyme kinetics , 1993 .

[17]  Svetoslav Markov On Quasivector Spaces of Convex Bodies and Zonotopes , 2004, Numerical Algorithms.

[18]  Nikolay Kirov,et al.  Volterra Series and Numerical Approximations of ODEs , 2004, NAA.

[19]  Jürgen Herzberger Inclusion methods for nonlinear problems : with applications in engineering, economics and physics , 2003 .

[20]  Claudio Cobelli,et al.  Global identifiability of nonlinear models of biological systems , 2001, IEEE Transactions on Biomedical Engineering.

[21]  S. Markov,et al.  Estimation and Identification Using Interval Arithmetic , 1992 .

[22]  G. Stephanopoulos,et al.  Metabolic Engineering: Principles And Methodologies , 1998 .

[23]  Christian Ullrich Contributions to computer arithmetic and self-validating numerical methods , 1990 .

[24]  Evgenija D. Popova,et al.  Quality of the Solution Sets of Parameter‐Dependent Interval Linear Systems , 2002 .

[25]  Eric Walter,et al.  Identifiability of State Space Models , 1982 .

[26]  Mondher Farza,et al.  BIOESTIM: software for automatic design of estimators in bioprocess engineering , 1994, Comput. Appl. Biosci..

[27]  Mikhail Ivanov Krastanov,et al.  Stabilizing Feedback of a Nonlinear Biological Wastewater Treatment Plants Model , 2003, LSSC.

[28]  James H. Davenport,et al.  Computer algebra approaches to enzyme kinetics , 1991 .

[29]  Yves Lecourtier,et al.  Identifiability and distinguishability testing via computer algebra , 1985 .

[30]  Svetoslav Markov,et al.  Linear Interpolation and Estimation Using Interval Analysis , 1996 .

[31]  Ewart R. Carson,et al.  The mathematical modeling of metabolic and endocrine systems : model formulation, identification, and validation , 1983 .

[32]  Svetoslav Markov,et al.  Stochastic Arithmetic: s-spaces and Some Applications , 2004, Numerical Algorithms.

[33]  Q Zheng,et al.  Computer algebra is indispensable in some problems of mathematical biology. , 1998, Mathematical biosciences.

[34]  E O Powell,et al.  Theory of the chemostat. , 1965, Laboratory practice.

[35]  P. Haccou Mathematical Models of Biology , 2022 .

[36]  Michael P. Barnett,et al.  Computer algebra in the life sciences , 2002, SIGS.

[37]  Barbara Heller,et al.  MACSYMA for Statisticians , 1991 .

[38]  S. Markov,et al.  Curve Fitting and Interpolation of Biological Data Under Uncertainties , 1996, J. Univers. Comput. Sci..

[39]  Eric Walter,et al.  Identification of Parametric Models: from Experimental Data , 1997 .

[40]  Mikhail Ivanov Krastanov,et al.  A Stabilizing Feedback of an Uncertain Control System , 2002, Numerical Methods and Application.

[41]  M. Bayram,et al.  Using computer algebra to determine rate constants in biochemistry , 1993, Acta biotheoretica.

[42]  Christian P. Ullrich,et al.  Simplication of symbolic-numerical interval expressions , 1998, ISSAC '98.

[43]  C. Cobelli,et al.  Global identifiability of linear compartmental models-a computer algebra algorithm , 1998, IEEE Transactions on Biomedical Engineering.

[44]  John Happel,et al.  Chapter 6 – Identifiability and Distinguishability , 1986 .

[45]  E. Kaucher Interval Analysis in the Extended Interval Space IR , 1980 .

[46]  J. Norton,et al.  Bounding Approaches to System Identification , 1996 .

[47]  G. Wolkowicz The theory of the chemostat: Dynamics of microbial competition , 1996 .

[48]  A. I.,et al.  Neural Field Continuum Limits and the Structure–Function Partitioning of Cognitive–Emotional Brain Networks , 2023, Biology.

[49]  M Bayram,et al.  Automatic analysis of the control of metabolic networks , 1996, Comput. Biol. Medicine.

[50]  H P Wynn,et al.  Differential algebra methods for the study of the structural identifiability of rational function state-space models in the biosciences. , 2001, Mathematical biosciences.

[51]  Christian P. Ullrich,et al.  Embedding directed intervals in Mathematica , 1996, RITA.

[52]  Lennart Ljung,et al.  On global identifiability for arbitrary model parametrizations , 1994, Autom..

[53]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[54]  Svetoslav Markov,et al.  On linear interpolation under interval data , 1996 .

[55]  Svetoslav Markov,et al.  Stochastic arithmetic: addition and multiplication by scalars , 2004 .

[56]  Plamena Zlateva,et al.  Stability Analysis of a Nonlinear Model of Wastewater Treatment Processes , 2004, NAA.

[57]  Svetoslav Markov,et al.  On quasilinear spaces of convex bodies and intervals , 2004 .

[58]  P. Jumars,et al.  Animal Guts as Ideal Chemical Reactors: Maximizing Absorption Rates , 2000, The American Naturalist.

[59]  E. Walter,et al.  Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics , 2001 .

[60]  Evgenija D. Popova,et al.  Parametric Interval Linear Solver , 2004, Numerical Algorithms.

[61]  M. Krastanov,et al.  Stabilizing feedback of a nonlinear process involving uncertain data , 2003, Bioprocess and biosystems engineering.

[62]  C. Ullrich,et al.  Directed Interval Arithmetic in Mathematica: Implementation and Applications , 1996 .

[63]  Witold Pedrycz,et al.  Bounding approaches to system identification , 1997 .

[64]  K R Godfrey,et al.  Structural identifiability of the parameters of a nonlinear batch reactor model. , 1992, Mathematical biosciences.