A comparison of structure-preserving integrators for discrete thermoelastic systems

This paper contains a comparison of three recently proposed structure-preserving time-stepping schemes for nonlinear thermomechanical systems. These schemes can be considered as extension to coupled thermoelastic problems of well-established energy–momentum schemes for nonlinear elastodynamics. The present comparison is performed in the context of a finite-dimensional model problem for coupled thermomechanical systems: the thermoelastic double pendulum. It is shown that, similar to their purely mechanical ancestors, structure-preserving integrators for coupled thermoelasticity in general exhibit superior numerical stability and robustness properties.

[1]  T. Laursen,et al.  Energy consistent algorithms for dynamic finite deformation plasticity , 2002 .

[2]  S. Krenk The role of geometric stiffness in momentum and energy conserving time integration , 2007 .

[3]  Peter Betsch,et al.  Conservation properties of a time FE method. Part I: time-stepping schemes forN-body problems , 2000 .

[4]  Peter Betsch,et al.  Transient three‐dimensional domain decomposition problems: Frame‐indifferent mortar constraints and conserving integration , 2010 .

[5]  Francisco Armero,et al.  A new unconditionally stable fractional step method for non‐linear coupled thermomechanical problems , 1992 .

[6]  J. C. Simo,et al.  On the stability of symplectic and energy-momentum algorithms for non-linear Hamiltonian systems with symmetry , 1996 .

[7]  Ignacio Romero,et al.  Algorithms for coupled problems that preserve symmetries and the laws of thermodynamics: Part I: Monolithic integrators and their application to finite strain thermoelasticity , 2010 .

[8]  Peter Betsch,et al.  A mortar method for energy‐momentum conserving schemes in frictionless dynamic contact problems , 2009 .

[9]  Donald Greenspan Completely Conservative, Covariant Numerical Methodology , 1995 .

[10]  Peter Betsch,et al.  On the use of geometrically exact shells in a conserving framework for flexible multibody dynamics , 2009 .

[11]  C. SimoJ.,et al.  The discrete energy-momentum method , 1992 .

[12]  Andrew M. Stuart,et al.  A First Course in Continuum Mechanics: Bibliography , 2008 .

[13]  O. Gonzalez Time integration and discrete Hamiltonian systems , 1996 .

[14]  Peter Betsch,et al.  Conservation properties of a time FE method. Part IV: Higher order energy and momentum conserving schemes , 2005 .

[15]  D. Greenspan Conservative motion of a discrete, dodecahedral gyroscope , 2002 .

[16]  L. E. Malvern Introduction to the mechanics of a continuous medium , 1969 .

[17]  Peter Betsch,et al.  Energy–momentum consistent finite element discretization of dynamic finite viscoelasticity , 2010 .

[18]  T. Laursen Computational Contact and Impact Mechanics , 2003 .

[19]  J. C. Simo,et al.  The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics , 1992 .

[20]  Ignacio Romero,et al.  An objective finite element approximation of the kinematics of geometrically exact rods and its use in the formulation of an energy–momentum conserving scheme in dynamics , 2002 .

[21]  Ignacio Romero,et al.  Thermodynamically consistent time‐stepping algorithms for non‐linear thermomechanical systems , 2009 .

[22]  F. Armero,et al.  On the formulation of high-frequency dissipative time-stepping algorithms for nonlinear dynamics. Part II: second-order methods , 2001 .

[23]  Peter Betsch,et al.  An energy consistent hybrid space‐time Galerkin method for nonlinear thermomechanical problems , 2006 .

[24]  Peter Betsch,et al.  Variational Integrators and Energy-Momentum Schemes for Flexible Multibody Dynamics , 2010 .

[25]  A. Ibrahimbegovic Nonlinear Solid Mechanics , 2009 .

[26]  Michael Groß,et al.  Higher-order accurate and energy-momentum consistent discretisation of dynamic finite deformation thermo-viscoelasticity , 2009 .

[27]  Claes Johnson,et al.  Computational Differential Equations , 1996 .

[28]  Oscar Gonzalez,et al.  Exact energy and momentum conserving algorithms for general models in nonlinear elasticity , 2000 .

[29]  M. Géradin,et al.  Flexible Multibody Dynamics: A Finite Element Approach , 2001 .

[30]  Tod A. Laursen,et al.  Improved implicit integrators for transient impact problems––dynamic frictional dissipation within an admissible conserving framework , 2003 .

[31]  H. Ch. Öttinger,et al.  Beyond Equilibrium Thermodynamics , 2005 .

[32]  J. C. Simo,et al.  Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics , 1992 .

[33]  Peter Betsch,et al.  Energy-momentum consistent algorithms for dynamic thermomechanical problems—Application to mortar domain decomposition problems , 2011 .

[34]  Francisco Armero,et al.  Energy-dissipative momentum-conserving time-stepping algorithms for finite strain multiplicative plasticity , 2006 .

[35]  Peter Betsch,et al.  Conservation properties of a time FE method—part II: Time‐stepping schemes for non‐linear elastodynamics , 2001 .

[36]  D. Greenspan Conservative motion of a discrete, hexahedral gyroscope , 1998 .

[37]  J. C. Simo,et al.  A new energy and momentum conserving algorithm for the non‐linear dynamics of shells , 1994 .