Ferroelectric Materials: A Novel Pathway for Efficient Solar Water Splitting

Over the past few decades, solar water splitting has evolved into one of the most promising techniques for harvesting hydrogen using solar energy. Despite the high potential of this process for hydrogen production, many research groups have encountered significant challenges in the quest to achieve a high solar-to-hydrogen conversion efficiency. Recently, ferroelectric materials have attracted much attention as promising candidate materials for water splitting. These materials are among the best candidates for achieving water oxidation using solar energy. Moreover, their characteristics are changeable by atom substitute doping or the fabrication of a new complex structure. In this review, we describe solar water splitting technology via the solar-to-hydrogen conversion process. We will examine the challenges associated with this technology whereby ferroelectric materials are exploited to achieve a high solar-to-hydrogen conversion efficiency.

[1]  J. Szade,et al.  Visible-light photocatalytic activity of nitrogen-doped NiTiO3 thin films prepared by a co-sputtering process , 2015 .

[2]  Fang Qian,et al.  Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation. , 2010, Nano letters.

[3]  Martin Schreyer,et al.  Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications , 2013 .

[4]  Kazunari Domen,et al.  A Front‐Illuminated Nanostructured Transparent BiVO4 Photoanode for >2% Efficient Water Splitting , 2016 .

[5]  Linjun Wang,et al.  Simultaneous Enhancement of Charge Separation and Hole Transportation in a TiO2–SrTiO3 Core–Shell Nanowire Photoelectrochemical System , 2017, Advanced materials.

[6]  K. Sivula,et al.  Photoelectrochemical Tandem Cells for Solar Water Splitting , 2013 .

[7]  Z. L. Wang,et al.  Mismatch Strain Induced Formation of ZnO/ZnS Heterostructured Rings , 2007 .

[8]  M. Shen,et al.  Dual role of TiO2 buffer layer in Pt catalyzed BiFeO3 photocathodes: Efficiency enhancement and surface protection , 2017 .

[9]  Hong Liu,et al.  Recent progress in design, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures: a review. , 2014, Chemical Society reviews.

[10]  S. Rayalu,et al.  Photocatalytic hydrogen generation through water splitting on nano-crystalline LaFeO3 perovskite , 2012 .

[11]  T. Edvinsson,et al.  A facile approach to ZnO/CdS nanoarrays and their photocatalytic and photoelectrochemical properties , 2013 .

[12]  V. Fridkin,et al.  Bulk photovoltaic effect in noncentrosymmetric crystals , 2001 .

[13]  B. Shan,et al.  Surface modification of LaFeO3 by Co-Pi electrochemical deposition as an efficient photoanode under visible light , 2016 .

[14]  Y. Lei,et al.  Switchable charge-transfer in the photoelectrochemical energy-conversion process of ferroelectric BiFeO₃ photoelectrodes. , 2014, Angewandte Chemie.

[15]  J. Jang,et al.  CdS–AgGaS2 photocatalytic diodes for hydrogen production from aqueous Na2S/Na2SO3 electrolyte solution under visible light (λ ≥ 420 nm) , 2007 .

[16]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[17]  Tae-Wan Kim,et al.  Nanoporous BiVO4 Photoanodes with Dual-Layer Oxygen Evolution Catalysts for Solar Water Splitting. , 2014 .

[18]  F. Tian,et al.  Graphene-based photocatalysts for oxygen evolution from water , 2015 .

[19]  Zhike Liu,et al.  The Application of Bismuth-Based Oxides in Organic-Inorganic Hybrid Photovoltaic Devices , 2012 .

[20]  A. Tahir,et al.  Unbiased Spontaneous Solar Fuel Production using Stable LaFeO3 Photoelectrode , 2018, Scientific Reports.

[21]  Zhao‐Qing Liu,et al.  Plasmon-Enhanced Photoelectrochemical Water Splitting on Gold Nanoparticle Decorated ZnO/CdS Nanotube Arrays , 2017 .

[22]  P. Kamat,et al.  Capture, store, and discharge. Shuttling photogenerated electrons across TiO2-silver interface. , 2011, ACS nano.

[23]  Laura Calvillo,et al.  YFeO3 Photocathodes for Hydrogen Evolution , 2017 .

[24]  M. Nolan Surface modification of TiO2 with metal oxide nanoclusters: a route to composite photocatalytic materials. , 2011, Chemical Communications.

[25]  Yue Zhang,et al.  Design of sandwich-structured ZnO/ZnS/Au photoanode for enhanced efficiency of photoelectrochemical water splitting , 2015, Nano Research.

[26]  Jian-Fang Xu,et al.  Controllable synthesis of hexagonal and orthorhombic YFeO3 and their visible-light photocatalytic activities , 2012 .

[27]  L. You,et al.  Enhanced Photoelectrochemical Performance in Reduced Graphene Oxide/BiFeO3 Heterostructures. , 2017, Small.

[28]  High-crystallinity and large-grain CH3NH3PbI3 thin films for efficient TiO2 nanorod array perovskite solar cells , 2018 .

[29]  Roel van de Krol,et al.  Nature and Light Dependence of Bulk Recombination in Co-Pi-Catalyzed BiVO4 Photoanodes , 2012 .

[30]  Swapan K. Ghosh,et al.  Enhancement of Visible Light Photocatalytic Activity of SrTiO3: A Hybrid Density Functional Study , 2015 .

[31]  Jimin Xie,et al.  Microwave-assisted synthesis of perovskite ReFeO3 (Re: La, Sm, Eu, Gd) photocatalyst , 2010 .

[32]  Aron Walsh,et al.  Band alignment of rutile and anatase TiO 2 , 2013 .

[33]  Tao Zhang,et al.  Photoelectrochemical devices for solar water splitting - materials and challenges. , 2017, Chemical Society reviews.

[34]  J. Zhang,et al.  Uniform carbon-coated CdS core–shell nanostructures: synthesis, ultrafast charge carrier dynamics, and photoelectrochemical water splitting , 2016 .

[35]  Jinhua Ye,et al.  A highly durable p-LaFeO3/n-Fe2O3 photocell for effective water splitting under visible light. , 2015, Chemical communications.

[36]  Chao Zhang,et al.  Low‐Cost Fully Transparent Ultraviolet Photodetectors Based on Electrospun ZnO‐SnO2 Heterojunction Nanofibers , 2013, Advanced materials.

[37]  M. Cardona Optical Properties and Band Structure of SrTiO 3 and BaTiO 3 , 1965 .

[38]  D. Dimitrov,et al.  Effect of nickel doping on the photocatalytic activity of ZnO thin films under UV and visible light , 2011 .

[39]  Craig A. Grimes,et al.  Enhanced photoelectrochemical-response in highly ordered TiO2 nanotube-arrays anodized in boric acid containing electrolyte , 2006 .

[40]  A. Ghosh,et al.  Transition-metal dopants for extending the response of titanate photoelectrolysis anodes , 1979 .

[41]  Yung C. Liang,et al.  Epitaxial ferroelectric BiFeO3 thin films for unassisted photocatalytic water splitting , 2013 .

[42]  Patrik Schmuki,et al.  TiO2 nanotubes: synthesis and applications. , 2011, Angewandte Chemie.

[43]  Aron Walsh,et al.  Ferroelectric materials for solar energy conversion: photoferroics revisited , 2014, 1412.6929.

[44]  S. Tilley,et al.  Photovoltaic and Photoelectrochemical Solar Energy Conversion with Cu2O , 2015 .

[45]  A. Tagantsev,et al.  Room-temperature ferroelectricity in strained SrTiO3 , 2004, Nature.

[46]  Rong Huang,et al.  WO3 mesocrystal-assisted photoelectrochemical activity of BiVO4 , 2017 .

[47]  Jun Hee Lee,et al.  TiO2/ferroelectric heterostructures as dynamic polarization-promoted catalysts for photochemical and electrochemical oxidation of water. , 2014, Physical review letters.

[48]  S. Basu,et al.  Photocatalytic water splitting for hydrogen production , 2017 .

[49]  Yijie Huo,et al.  Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30% , 2016, Nature Communications.

[50]  Kui Yao,et al.  Bulk Photovoltaic Effect at Visible Wavelength in Epitaxial Ferroelectric BiFeO3 Thin Films , 2010, Advanced materials.

[51]  Qingfeng Dong,et al.  Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals , 2015, Science.

[52]  C. Summers,et al.  Photoluminescence properties of ZnS epilayers , 1997 .

[53]  S. G. Kumar,et al.  Physics and chemistry of CdTe/CdS thin film heterojunction photovoltaic devices: fundamental and critical aspects , 2014 .

[54]  K. Parida,et al.  Fabrication, Characterization, and Photoelectrochemical Properties of Cu‐Doped PbTiO3 and Its Hydrogen Production Activity , 2013 .

[55]  F. Wang,et al.  Electrodeposition of ZnO nanoflake-based photoanode sensitized by carbon quantum dots for photoelectrochemical water oxidation , 2017 .

[56]  Yuyu Bu,et al.  High-efficiency photoelectrochemical properties by a highly crystalline CdS-sensitized ZnO nanorod array. , 2013, ACS applied materials & interfaces.

[57]  Changku Sun,et al.  Synthesis and Growth Mechanism of Lead Titanate Nanotube Arrays by Hydrothermal Method , 2008 .

[58]  J. S. Lee,et al.  Photoelectrochemical water splitting over ordered honeycomb hematite electrodes stabilized by alumina shielding , 2012 .

[59]  Xudong Wang,et al.  Ferroelectric Polarization-Enhanced Photoelectrochemical Water Splitting in TiO2-BaTiO3 Core-Shell Nanowire Photoanodes. , 2015, Nano letters.

[60]  Y. Ping,et al.  Simultaneous enhancements in photon absorption and charge transport of bismuth vanadate photoanodes for solar water splitting , 2015, Nature Communications.

[61]  J. Jang,et al.  Heterojunction semiconductors: A strategy to develop efficient photocatalytic materials for visible light water splitting , 2012 .

[62]  Aron Walsh,et al.  Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells , 2014, Nano letters.

[63]  D. Singh,et al.  Microwave assisted synthesis of La1−xCaxMnO3 (x = 0, 0.2 and 0.4): Structural and capacitance properties , 2017 .

[64]  A. Mendes,et al.  An innovative photoelectrochemical lab device for solar water splitting , 2014 .

[65]  Yan-Gu Lin,et al.  Template synthesis of copper oxide nanowires for photoelectrochemical hydrogen generation , 2013 .

[66]  M. Shen,et al.  Improved photocathodic performance in Pt catalyzed ferroelectric BiFeO3 films sandwiched by a porous carbon layer. , 2017, Chemical communications.

[67]  Jian Liu,et al.  Hybrid functionals studies of structural and electronic properties of ZnxCd(1−x)S and (ZnxCd1−x)(SexS1−x) solid solution photocatalysts , 2012 .

[68]  Yiseul Park,et al.  Progress in Bismuth Vanadate Photoanodes for Use in Solar Water Oxidation , 2013 .

[69]  Xiaolin Zheng,et al.  Simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation. , 2014, Nano letters.

[70]  Bin Zhang,et al.  Synthesis of ultrathin CdS nanosheets as efficient visible-light-driven water splitting photocatalysts for hydrogen evolution. , 2013, Chemical communications.

[71]  Ho Won Jang,et al.  Domain-engineered BiFeO3 thin-film photoanodes for highly enhanced ferroelectric solar water splitting , 2018, Nano Research.

[72]  K. Sumathy,et al.  A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production , 2007 .

[73]  E. Xie,et al.  Toward efficient photoelectrochemical water-splitting by using screw-like SnO2 nanostructures as photoanode after being decorated with CdS quantum dots , 2016 .

[74]  Alessia Polemi,et al.  Erratum: Power conversion efficiency exceeding the Shockley–Queisser limit in a ferroelectric insulator , 2016, Nature Photonics.

[75]  Yuxiang Hu,et al.  Fe(III) doped and grafted PbTiO3 film photocathode with enhanced photoactivity for hydrogen production , 2014 .

[76]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[77]  R. Takahashi,et al.  Photoelectrochemical water splitting enhanced by self-assembled metal nanopillars embedded in an oxide semiconductor photoelectrode , 2016, Nature Communications.

[78]  John Rick,et al.  Using hematite for photoelectrochemical water splitting: a review of current progress and challenges. , 2016, Nanoscale horizons.

[79]  Kazunari Domen,et al.  Cu2O as a photocatalyst for overall water splitting under visible light irradiation , 1998 .

[80]  J. Jang,et al.  Effective charge separation in site-isolated Pt-nanodot deposited PbTiO3 nanotube arrays for enhanced photoelectrochemical water splitting , 2018 .

[81]  K. Hashimoto,et al.  An Efficient Visible-Light-Sensitive Fe(III)-Grafted TiO2 Photocatalyst , 2010 .

[82]  D. Fermín,et al.  Photoelectrochemical Properties of LaFeO3 Nanoparticles , 2014 .

[83]  Jun Zhang,et al.  Tailored TiO2-SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance. , 2010, ACS nano.

[84]  Mietek Jaroniec,et al.  Noble metal-free reduced graphene oxide-ZnxCd₁-xS nanocomposite with enhanced solar photocatalytic H₂-production performance. , 2012, Nano letters.

[85]  Xiaobo Chen,et al.  Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. , 2007, Chemical reviews.

[86]  H. Kim,et al.  Stabilizing effect in nano-titania functionalized CdS photoanode for sustained hydrogen generation , 2014 .

[87]  J. Kennedy,et al.  Photo‐oxidation of Water at Barium Titanate Electrodes , 1976 .

[88]  Nathan S. Lewis,et al.  An experimental and modeling/simulation-based evaluation of the efficiency and operational performance characteristics of an integrated, membrane-free, neutral pH solar-driven water-splitting system , 2014 .

[89]  Youtong Fang,et al.  Construction of FeS2‐Sensitized ZnO@ZnS Nanorod Arrays with Enhanced Optical and Photoresponse Performances , 2015 .

[90]  L. You,et al.  Enhanced ferroelectric photoelectrochemical properties of polycrystalline BiFeO3 film by decorating with Ag nanoparticles , 2016 .

[91]  V. K. Mahajan,et al.  Design of a Highly Efficient Photoelectrolytic Cell for Hydrogen Generation by Water Splitting: Application of TiO2-xCx Nanotubes as a Photoanode and Pt/TiO2 Nanotubes as a Cathode , 2007 .

[92]  H. Yi,et al.  Mechanism of the Switchable Photovoltaic Effect in Ferroelectric BiFeO3 , 2011, Advanced materials.

[93]  Zhifeng Liu,et al.  PEC electrode of ZnO nanorods sensitized by CdS with different size and its photoelectric properties , 2013 .

[94]  M. B. Yagci,et al.  Efficient synthesis of perovskite-type oxide photocathode by nonhydrolytic sol-gel method with an enhanced photoelectrochemical activity , 2018, Journal of Alloys and Compounds.

[95]  Thomas W. Hamann,et al.  Roadmap on solar water splitting: current status and future prospects , 2017 .

[96]  Akihiko Kudo,et al.  Photocatalytic H2 evolution under visible light irradiation on Ni-doped ZnS photocatalyst , 2000 .

[97]  A. Trenczek-Zając,et al.  A SrTiO 3 -TiO 2 eutectic composite as a stable photoanode material for photoelectrochemical hydrogen production , 2017 .

[98]  Mohammad Khaja Nazeeruddin,et al.  Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts , 2014, Science.

[99]  K. Mawatari,et al.  Nanostructured WO3 /BiVO4 photoanodes for efficient photoelectrochemical water splitting. , 2014, Small.

[100]  M. Shen,et al.  Stable and efficient multi-crystalline n+p silicon photocathode for H2 production with pyramid-like surface nanostructure and thin Al2O3 protective layer , 2015 .

[101]  J. Ha,et al.  High-performance ZnS/GaN heterostructure photoanode for photoelectrochemical water splitting applications , 2018 .

[102]  Ib Chorkendorff,et al.  2-Photon tandem device for water splitting: comparing photocathode first versus photoanode first designs , 2014 .

[103]  J. Cen,et al.  Photoelectrochemical water splitting with a SrTiO3:Nb/SrTiO3 n+-n homojunction structure. , 2017, Physical chemistry chemical physics : PCCP.

[104]  Fang Wang,et al.  Design of Core–Shell‐Structured ZnO/ZnS Hybridized with Graphite‐Like C3N4 for Highly Efficient Photoelectrochemical Water Splitting , 2017 .

[105]  S. Dunn,et al.  Perovskite BiFeO3 thin film photocathode performance with visible light activity , 2016, Nanotechnology.

[106]  J. Herrmann,et al.  Effect of chromium doping on the electrical and catalytic properties of powder titania under UV and visible illumination , 1984 .

[107]  R. Marschall,et al.  Semiconductor Composites: Strategies for Enhancing Charge Carrier Separation to Improve Photocatalytic Activity , 2014 .

[108]  David L. Morse,et al.  Strontium titanate photoelectrodes. Efficient photoassisted electrolysis of water at zero applied potential , 1976 .

[109]  M. Aslam,et al.  ZnS shielded ZnO nanowire photoanodes for efficient water splitting , 2014 .

[110]  A. Miotello,et al.  Hydrogen production by photocatalytic water-splitting using Cr- or Fe-doped TiO2 composite thin films photocatalyst , 2009 .

[111]  R. Amal,et al.  Defect engineering of ZnS thin films for photoelectrochemical water-splitting under visible light , 2016 .

[112]  Rengui Li Latest progress in hydrogen production from solar water splitting via photocatalysis, photoelectrochemical, and photovoltaic-photoelectrochemical solutions , 2017 .

[113]  J. MacManus‐Driscoll,et al.  Very High Surface Area Mesoporous Thin Films of SrTiO3 Grown by Pulsed Laser Deposition and Application to Efficient Photoelectrochemical Water Splitting. , 2016, Nano letters.

[114]  Z. Mi,et al.  Epitaxial Bi2 FeCrO6 Multiferroic Thin Film as a New Visible Light Absorbing Photocathode Material. , 2015, Small.

[115]  M. Shen,et al.  Nano‐Au and Ferroelectric Polarization Mediated Si/ITO/BiFeO3 Tandem Photocathode for Efficient H2 Production , 2016 .

[116]  K. Domen,et al.  A conductive ZnO–ZnGaON nanowire-array-on-a-film photoanode for stable and efficient sunlight water splitting , 2014 .

[117]  M. A. El Khakani,et al.  Photocatalytic activity of Cr-doped TiO2 nanoparticles deposited on porous multicrystalline silicon films , 2014, Nanoscale Research Letters.

[118]  D. Njomo,et al.  An overview of hydrogen gas production from solar energy , 2012 .

[119]  Jae Sung Lee,et al.  Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation , 2011 .

[120]  A. Mendes,et al.  Optimized photoelectrochemical tandem cell for solar water splitting , 2017, Energy Storage Materials.

[121]  M. Shen,et al.  Photocathodic behavior of ferroelectric Pb(Zr,Ti)O(3) films decorated with silver nanoparticles. , 2013, Chemical communications.

[122]  K. Hashimoto,et al.  Conduction band energy level control of titanium dioxide: toward an efficient visible-light-sensitive photocatalyst. , 2010, Journal of the American Chemical Society.

[123]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[124]  Shannon W. Boettcher,et al.  Oxygen Evolution Reaction Electrocatalysis on Transition Metal Oxides and (Oxy)hydroxides: Activity Trends and Design Principles , 2015 .

[125]  Jin-Song Hu,et al.  Mass production and high photocatalytic activity of ZnS nanoporous nanoparticles. , 2005, Angewandte Chemie.

[126]  Zhiqun Lin,et al.  p-n Heterojunction photoelectrodes composed of Cu2O-loaded TiO2 nanotube arrays with enhanced photoelectrochemical and photoelectrocatalytic activities , 2013 .

[127]  M. Shen,et al.  n-type silicon photocathodes with Al-doped rear p+ emitter and Al2O3-coated front surface for efficient and stable H2 production , 2015 .

[128]  A. Kudo,et al.  A Novel Aqueous Process for Preparation of Crystal Form-Controlled and Highly Crystalline BiVO4 Powder from Layered Vanadates at Room Temperature and Its Photocatalytic and Photophysical Properties , 1999 .

[129]  Jinsong Huang,et al.  Physical aspects of ferroelectric semiconductors for photovoltaic solar energy conversion , 2016 .

[130]  D. Singh,et al.  Microwave-assisted synthesis of nanostructured perovskite-type oxide with efficient photocatalytic activity against organic reactants in gaseous and aqueous phases , 2017 .

[131]  Monika Tomar,et al.  Graphene/semiconductor silicon modified BiFeO3/indium tin oxide ferroelectric photovoltaic device for transparent self-powered windows , 2015 .

[132]  Jinsong Huang,et al.  Arising applications of ferroelectric materials in photovoltaic devices , 2014 .

[133]  Y. Chu,et al.  Self‐Assembled BiFeO3‐ε‐Fe2O3 Vertical Heteroepitaxy for Visible Light Photoelectrochemistry , 2016 .

[134]  Marin Alexe,et al.  Role of domain walls in the abnormal photovoltaic effect in BiFeO3 , 2013, Nature Communications.

[135]  Nathan S. Lewis,et al.  An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems , 2013 .

[136]  Detlef W. Bahnemann,et al.  Photochemical splitting of water for hydrogen production by photocatalysis: A review , 2014 .

[137]  R. Gómez,et al.  Metal Doping to Enhance the Photoelectrochemical Behavior of LaFeO3 Photocathodes. , 2017, ChemSusChem.

[138]  H. Ullah,et al.  Photoelectrochemical solar water splitting: From basic principles to advanced devices , 2018 .

[139]  Jae Sung Lee,et al.  Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting , 2013, Scientific Reports.

[140]  F. A. Benko,et al.  A photoelectrochemical determination of the position of the conduction and valence band edges of p‐type CuO , 1982 .

[141]  M. Khan,et al.  Ferroelectric polarization effect on surface chemistry and photo-catalytic activity: A review , 2016 .

[142]  Ho Won Jang,et al.  Template-engineered epitaxial BiVO4 photoanodes for efficient solar water splitting , 2017 .

[143]  H. Tada,et al.  Titanium(IV) dioxide surface-modified with iron oxide as a visible light photocatalyst. , 2011, Angewandte Chemie.

[144]  Junying Zhang,et al.  TiO2 film/Cu2O microgrid heterojunction with photocatalytic activity under solar light irradiation. , 2009, ACS applied materials & interfaces.

[145]  Craig A Grimes,et al.  Enhanced photocleavage of water using titania nanotube arrays. , 2005, Nano letters.

[146]  Zhichuan J. Xu,et al.  Hybrid catalysts for photoelectrochemical reduction of carbon dioxide: a prospective review on semiconductor/metal complex co-catalyst systems , 2014 .

[147]  Akihiko Kudo,et al.  Photocatalytic H2 evolution under visible light irradiation on Zn1-xCuxS solid solution , 1999 .

[148]  M. Misra,et al.  Enhanced photoelectrochemical generation of hydrogen from water by 2,6-dihydroxyantraquinone-functionalized titanium dioxide nanotubes , 2007 .

[149]  M. Guennou,et al.  Photovoltaics with Ferroelectrics: Current Status and Beyond , 2016, Advanced materials.

[150]  Zhiqiang Li,et al.  Application of weak ferromagnetic BiFeO3 films as the photoelectrode material under visible-light irradiation , 2007 .

[151]  Xin Guo,et al.  Facile approaching hierarchical CdS films as electrode toward photoelectrochemical water splitting , 2015, Nanotechnology.

[152]  Shuang Lin,et al.  Enhanced photoelectrochemical and photocatalytic activity by Cu2O/SrTiO3 p–n heterojunction via a facile deposition–precipitation technique , 2015 .

[153]  John D. Perkins,et al.  Inverse design approach to hole doping in ternary oxides: Enhancing p-type conductivity in cobalt oxide spinels , 2011 .

[154]  Yi Cui,et al.  Efficient solar-driven water splitting by nanocone BiVO4-perovskite tandem cells , 2016, Science Advances.

[155]  S. Won,et al.  Vertically Aligned Core–Shell PbTiO3@TiO2 Heterojunction Nanotube Array for Photoelectrochemical and Photocatalytic Applications , 2017 .

[156]  Jiaguo Yu,et al.  Influence of lattice integrity and phase composition on the photocatalytic hydrogen production efficiency of ZnS nanomaterials. , 2012, Nanoscale.

[157]  P. D. Jongh,et al.  Cu2O: a catalyst for the photochemical decomposition of water? , 1999 .

[158]  G. Rohrer,et al.  Photocatalysts with internal electric fields. , 2014, Nanoscale.

[159]  U. Waghmare,et al.  Enhanced Photoelectrochemical Response of BaTiO3 with Fe Doping: Experiments and First-Principles Analysis , 2011 .

[160]  M. Muneer,et al.  Synthesis, characterization and visible-light driven photocatalysis by differently structured CdS/ZnS sandwich and core–shell nanocomposites , 2015 .

[161]  Daniel R. Gamelin,et al.  Composite photoanodes for photoelectrochemical solar water splitting , 2010 .

[162]  M. Shen,et al.  Composition dependence of the photochemical reduction of Ag+ by as-grown Pb(ZrxTi1−x)O3 films on indium tin oxide electrode , 2013 .

[163]  P. Kahol,et al.  Fabrication and characterization of NiO/ZnO p–n junctions by pulsed laser deposition , 2009 .

[164]  Pingyun Feng,et al.  A three-dimensional branched cobalt-doped α-Fe2O3 nanorod/MgFe2O4 heterojunction array as a flexible photoanode for efficient photoelectrochemical water oxidation. , 2013, Angewandte Chemie.

[165]  Zhuo Kang,et al.  Self-Powered Photoelectrochemical Biosensor Based on CdS/RGO/ZnO Nanowire Array Heterostructure. , 2016, Small.

[166]  X. Lou,et al.  Facile Synthesis of Multi-shelled ZnS-CdS Cages with Enhanced Photoelectrochemical Performance for Solar Energy Conversion , 2018 .

[167]  A. Kudo,et al.  Selective Preparation of Monoclinic and Tetragonal BiVO4 with Scheelite Structure and Their Photocatalytic Properties. , 2002 .

[168]  R. K. Upadhyay,et al.  Fe doped BaTiO3 sensitized by Fe3O4 nanoparticles for improved photoelectrochemical response , 2018 .

[169]  M. Grätzel,et al.  A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability , 2014, Science.

[170]  P. Maggard,et al.  Effects of Particle Surface Areas and Microstructures on Photocatalytic H2 and O2 Production over PbTiO3 , 2011 .

[171]  Kyoung-Shin Choi,et al.  Photoelectrochemical Properties and Stability of Nanoporous p-Type LaFeO3 Photoelectrodes Prepared by Electrodeposition , 2017 .

[172]  R. M. Fernández-Domene,et al.  ZnO/ZnS heterostructures for hydrogen production by photoelectrochemical water splitting , 2016 .

[173]  Chi Zhang,et al.  Efficient and Stable MoS2 /CdSe/NiO Photocathode for Photoelectrochemical Hydrogen Generation from Water. , 2015, Chemistry, an Asian journal.

[174]  James R. McKone,et al.  Solar water splitting cells. , 2010, Chemical reviews.

[175]  J. Fendler,et al.  Dihexadecyl phosphate, vesicle-stabilized and in situ generated mixed CdS and ZnS semiconductor particles. Preparation and utilization for photosensitized charge separation and hydrogen generation , 1988 .

[176]  Yong Ding,et al.  Piezo-phototronic Effect Enhanced UV/Visible Photodetector Based on Fully Wide Band Gap Type-II ZnO/ZnS Core/Shell Nanowire Array. , 2015, ACS nano.

[177]  I. Ivanov,et al.  In situ capping for size control of monochalcogenide (ZnS, CdS and SnS) nanocrystals produced by anaerobic metal-reducing bacteria , 2015, Nanotechnology.

[178]  Marika Edoff,et al.  Sustainable solar hydrogen production: from photoelectrochemical cells to PV-electrolyzers and back again , 2014 .

[179]  R. Takahashi,et al.  Epitaxial Rh-doped SrTiO3 thin film photocathode for water splitting under visible light irradiation , 2012 .

[180]  G. Pan,et al.  Magnetically recoverable and visible-light-driven nanocrystalline YFeO3 photocatalysts , 2011 .

[181]  B. Shan,et al.  Enhanced Photoelectrochemical Water Oxidation by Fabrication of p-LaFeO3/n-Fe2O3 Heterojunction on Hematite Nanorods , 2017 .

[182]  U. Waghmare,et al.  Improved Photoelectrochemical Water Splitting Performance of Cu2O/SrTiO3 Heterojunction Photoelectrode , 2014 .

[183]  A. Glass,et al.  Excited state polarization, bulk photovoltaic effect and the photorefractive effect in electrically polarized media , 1975 .

[184]  Tae Woo Kim,et al.  Electrochemical Synthesis of Photoelectrodes and Catalysts for Use in Solar Water Splitting. , 2015, Chemical reviews.

[185]  P. Schmuki,et al.  One-dimensional titanium dioxide nanomaterials: nanotubes. , 2014, Chemical Reviews.

[186]  Leone Spiccia,et al.  Renewable fuels from concentrated solar power: towards practical artificial photosynthesis , 2015 .

[187]  Jean François Dr. Reber,et al.  Photochemical production of hydrogen with zinc sulfide suspensions , 1984 .

[188]  Nam-Gyu Park,et al.  Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. , 2014, Nature nanotechnology.

[189]  M. Archer Photovoltaics and photoelectrochemistry: similarities and differences , 2002 .

[190]  Jinhua Ye,et al.  Visible-light-driven photoelectrochemical and photocatalytic performances of Cr-doped SrTiO3/TiO2 heterostructured nanotube arrays , 2013, Scientific Reports.

[191]  Changqing Yin,et al.  Microwave-assisted synthesis of nanocrystalline YFeO3 and study of its photoactivity , 2007 .

[192]  A. Pareek,et al.  Nanoniobia modification of CdS photoanode for an efficient and stable photoelectrochemical cell. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[193]  M. Shen,et al.  Enhanced photocathodic behaviors of Pb(Zr0.20Ti0.80)O3 films on Si substrates for hydrogen production , 2015 .

[194]  Ashutosh Kumar Singh,et al.  Preparation and characterization of nanostructured ZnO thin films for photoelectrochemical splitting of water , 2009 .

[195]  E. Borowiak‐Palen,et al.  Photocatalytic hydrogen generation over alkaline-earth titanates in the presence of electron donors , 2008 .

[196]  Dunwei Wang,et al.  Single-Crystalline Thin Films for Studying Intrinsic Properties of BiFeO3–SrTiO3 Solid Solution Photoelectrodes in Solar Energy Conversion , 2015 .

[197]  P. Woodward,et al.  Characterization of electronic structure and defect states of thin epitaxial BiFeO3 films by UV-visible absorption and cathodoluminescence spectroscopies , 2008 .

[198]  Gengfeng Zheng,et al.  High-performance perovskite photoanode enabled by Ni passivation and catalysis. , 2015, Nano letters.

[199]  Jiangwei Liu,et al.  Flexible Ultraviolet Photodetectors with Broad Photoresponse Based on Branched ZnS‐ZnO Heterostructure Nanofilms , 2014, Advanced materials.

[200]  C. Laberty‐Robert,et al.  Engineering n-p junction for photo-electrochemical hydrogen production. , 2017, Physical chemistry chemical physics : PCCP.

[201]  Kulamani Parida,et al.  Fabrication of nanocrystalline LaFeO3: An efficient sol–gel auto-combustion assisted visible light responsive photocatalyst for water decomposition , 2010 .

[202]  Kai Cui,et al.  Wafer-level photocatalytic water splitting on GaN nanowire arrays grown by molecular beam epitaxy. , 2011, Nano letters.

[203]  P. Gupta,et al.  Nanostructured Bi(1−x)Gd(x)FeO3 – a multiferroic photocatalyst on its sunlight driven photocatalytic activity , 2014 .

[204]  Shuxin Ouyang,et al.  β-AgAl(1-x)Ga(x)O2 solid-solution photocatalysts: continuous modulation of electronic structure toward high-performance visible-light photoactivity. , 2011, Journal of the American Chemical Society.