Bayes factors: Prior sensitivity and model generalizability

[1]  E. Wagenmakers A practical solution to the pervasive problems ofp values , 2007, Psychonomic bulletin & review.

[2]  P. Grünwald The Minimum Description Length Principle (Adaptive Computation and Machine Learning) , 2007 .

[3]  C. Robert,et al.  Deviance information criteria for missing data models , 2006 .

[4]  Kristopher J Preacher,et al.  Quantifying Parsimony in Structural Equation Modeling , 2006, Multivariate behavioral research.

[5]  J. Berger The case for objective Bayesian analysis , 2006 .

[6]  E. Wagenmakers,et al.  A Bayesian Perspective on Hypothesis Testing , 2006, Psychological science.

[7]  George Karabatsos,et al.  Bayesian nonparametric model selection and model testing , 2006 .

[8]  Jay I. Myung,et al.  Model selection by Normalized Maximum Likelihood , 2006 .

[9]  Peter Grünwald,et al.  Accumulative prediction error and the selection of time series models , 2006 .

[10]  Jay I. Myung,et al.  Global model analysis by parameter space partitioning. , 2019, Psychological review.

[11]  Herbert Hoijtink,et al.  Inequality constrained analysis of variance: a Bayesian approach. , 2005, Psychological methods.

[12]  Jun Lu,et al.  An introduction to Bayesian hierarchical models with an application in the theory of signal detection , 2005, Psychonomic bulletin & review.

[13]  M. Lee,et al.  Modeling individual differences in cognition , 2005, Psychonomic bulletin & review.

[14]  M. Lee,et al.  Bayesian statistical inference in psychology: comment on Trafimow (2003). , 2005, Psychological review.

[15]  Murray Aitkin,et al.  Bayesian point null hypothesis testing via the posterior likelihood ratio , 2005, Stat. Comput..

[16]  Jay I. Myung,et al.  A Bayesian approach to testing decision making axioms , 2005 .

[17]  Frank Jäkel,et al.  Bayesian inference for psychometric functions. , 2005, Journal of vision.

[18]  J-P Fox,et al.  Multilevel IRT using dichotomous and polytomous response data. , 2005, The British journal of mathematical and statistical psychology.

[19]  P. Congdon Bayesian predictive model comparison via parallel sampling , 2005, Comput. Stat. Data Anal..

[20]  Jeffrey N. Rouder,et al.  A hierarchical model for estimating response time distributions , 2005, Psychonomic bulletin & review.

[21]  Mark A. Pitt,et al.  Advances in Minimum Description Length: Theory and Applications , 2005 .

[22]  Andrew Gelman,et al.  R2WinBUGS: A Package for Running WinBUGS from R , 2005 .

[23]  Mark A. Pitt,et al.  Model Evaluation, Testing and Selection , 2005 .

[24]  A. Brix Bayesian Data Analysis, 2nd edn , 2005 .

[25]  Michael D. Lee,et al.  A Bayesian analysis of retention functions , 2004 .

[26]  Jay I. Myung,et al.  Assessing the distinguishability of models and the informativeness of data , 2004, Cognitive Psychology.

[27]  Karl J. Friston,et al.  Comparing dynamic causal models , 2004, NeuroImage.

[28]  M. Lee,et al.  Evidence accumulation in decision making: Unifying the “take the best” and the “rational” models , 2004, Psychonomic bulletin & review.

[29]  E. Wagenmakers,et al.  AIC model selection using Akaike weights , 2004, Psychonomic bulletin & review.

[30]  Roger Ratcliff,et al.  Assessing model mimicry using the parametric bootstrap , 2004 .

[31]  John H. Maindonald,et al.  This Passionate Study: A Dialogue with Florence Nightingale , 2004 .

[32]  Pedro M. Domingos The Role of Occam's Razor in Knowledge Discovery , 1999, Data Mining and Knowledge Discovery.

[33]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[34]  A. Raftery,et al.  Discussion: Performance of Bayesian Model Averaging , 2003 .

[35]  Jörg Rieskamp,et al.  How do people learn to allocate resources? Comparing two learning theories. , 2003, Journal of experimental psychology. Learning, memory, and cognition.

[36]  M. Lee,et al.  The roles of the convex hull and the number of potential intersections in performance on visually presented traveling salesperson problems , 2003, Memory & cognition.

[37]  A. Gelfand,et al.  Inequalities between expected marginal log‐likelihoods, with implications for likelihood‐based model complexity and comparison measures , 2003 .

[38]  W. Batchelder,et al.  Markov chain estimation for test theory without an answer key , 2003 .

[39]  M. Tribus,et al.  Probability theory: the logic of science , 2003 .

[40]  Woojae Kim,et al.  Flexibility versus generalizability in model selection , 2003, Psychonomic bulletin & review.

[41]  J. Bernardo,et al.  Bayesian Hypothesis Testing: a Reference Approach , 2002 .

[42]  I. J. Myung,et al.  When a good fit can be bad , 2002, Trends in Cognitive Sciences.

[43]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[44]  Hal S. Stern,et al.  On the Sensitivity of Bayes Factors to the Prior Distributions , 2002 .

[45]  I. J. Myung,et al.  Toward a method of selecting among computational models of cognition. , 2002, Psychological review.

[46]  Jeff Gill,et al.  Bayesian Methods : A Social and Behavioral Sciences Approach , 2002 .

[47]  M. Aitkin Likelihood and Bayesian analysis of mixtures , 2001 .

[48]  Bradley P. Carlin,et al.  Markov Chain Monte Carlo Methods for Computing Bayes Factors , 2001 .

[49]  Jorma Rissanen,et al.  Strong optimality of the normalized ML models as universal codes and information in data , 2001, IEEE Trans. Inf. Theory.

[50]  M. Lee Determining the Dimensionality of Multidimensional Scaling Representations for Cognitive Modeling. , 2001, Journal of mathematical psychology.

[51]  I. J. Myung,et al.  Counting probability distributions: Differential geometry and model selection , 2000, Proc. Natl. Acad. Sci. USA.

[52]  I. J. Myung,et al.  The Importance of Complexity in Model Selection. , 2000, Journal of mathematical psychology.

[53]  J. Busemeyer,et al.  Model Comparisons and Model Selections Based on Generalization Criterion Methodology. , 2000, Journal of mathematical psychology.

[54]  Golden,et al.  Statistical Tests for Comparing Possibly Misspecified and Nonnested Models. , 2000, Journal of mathematical psychology.

[55]  Wasserman,et al.  Bayesian Model Selection and Model Averaging. , 2000, Journal of mathematical psychology.

[56]  Zucchini,et al.  An Introduction to Model Selection. , 2000, Journal of mathematical psychology.

[57]  M. Schervish,et al.  Bayes Factors: What They are and What They are Not , 1999 .

[58]  D. Weakliem A Critique of the Bayesian Information Criterion for Model Selection , 1999 .

[59]  A. Raftery Bayes Factors and BIC , 1999 .

[60]  Donald B. Rubin,et al.  Evaluating and Using Statistical Methods in the Social Sciences , 1999 .

[61]  Alan E. Gelfand,et al.  Model choice: A minimum posterior predictive loss approach , 1998, AISTATS.

[62]  T. Wickens On the form of the retention function : Comment on Rubin and Wenzel (1996) : A quantitative description of retention , 1998 .

[63]  Arthur P. Dempster,et al.  The direct use of likelihood for significance testing , 1997, Stat. Comput..

[64]  Murray Aitkin The calibration of P-values, posterior Bayes factors and the AIC from the posterior distribution of the likelihood , 1997, Stat. Comput..

[65]  J. Wixted,et al.  Genuine power curves in forgetting: A quantitative analysis of individual subject forgetting functions , 1997, Memory & cognition.

[66]  I. J. Myung,et al.  Applying Occam’s razor in modeling cognition: A Bayesian approach , 1997 .

[67]  V. Balasubramanian Statistical Inference, Occam's Razor, and Statistical Mechanics on the Space of Probability Distributions , 1996, Neural Computation.

[68]  Amy Wenzel,et al.  One hundred years of forgetting: A quantitative description of retention , 1996 .

[69]  L. Wasserman,et al.  The Selection of Prior Distributions by Formal Rules , 1996 .

[70]  J. Berger,et al.  The Intrinsic Bayes Factor for Model Selection and Prediction , 1996 .

[71]  John Skilling,et al.  Data analysis : a Bayesian tutorial , 1996 .

[72]  Xiao-Li Meng,et al.  POSTERIOR PREDICTIVE ASSESSMENT OF MODEL FITNESS VIA REALIZED DISCREPANCIES , 1996 .

[73]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[74]  S. Chib Marginal Likelihood from the Gibbs Output , 1995 .

[75]  A. Raftery Bayesian Model Selection in Social Research , 1995 .

[76]  Donald B. Rubin,et al.  Avoiding Model Selection in Bayesian Social Research , 1995 .

[77]  A. O'Hagan,et al.  Fractional Bayes factors for model comparison , 1995 .

[78]  A. Jacobs,et al.  Models of visual word recognition: Sampling the state of the art. , 1994 .

[79]  R. Kass Bayes Factors in Practice , 1993 .

[80]  Anne Boomsma,et al.  Cross-Validation in Regression and Covariance Structure Analysis , 1992 .

[81]  A. Dawid Fisherian Inference in Likelihood and Prequential Frames of Reference , 1991 .

[82]  L. Squire,et al.  On the course of forgetting in very long-term memory. , 1989, Journal of experimental psychology. Learning, memory, and cognition.

[83]  Seymour Geisser,et al.  On Prior Distributions for Binary Trials , 1984 .

[84]  A. P. Dawid,et al.  Present position and potential developments: some personal views , 1984 .

[85]  G. Shafer Lindley's Paradox , 1982 .

[86]  Edward E. Leamer,et al.  Information Criteria for Choice of Regression Models: A Comment , 1979 .

[87]  Takamitsu Sawa,et al.  Information criteria for discriminating among alternative regression models / BEBR No. 455 , 1978 .

[88]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[89]  D. Lindley A STATISTICAL PARADOX , 1957 .