Positron emission tomography/computed tomography for target delineation in head and neck cancers.

Radiation and concurrent chemoradiation are essential in the treatment of head and neck cancers because they allow a potentially curative organ preservation approach in a manner that greatly affects quality of life. Greater doses of radiation to areas of gross disease have invariably led to greater loco-regional control. Radiation delivery has undergone great strides, especially in the era of intensity-modulated radiotherapy and related technologies. With the ability to sculpt out areas of higher and lower doses of radiation to millimeter accuracy, the role of imaging to better direct the radiation beam to its target via improved localization has become an issue of great promise. The use of (18)F-fluorodeoxyglucose-positron emission tomography (PET) with computed tomography (CT) as a means of noninvasively staging many head and neck cancers has become increasingly popular. With its role as a functional assay of tumor metabolic activity, it is often used in conjunction with physical examination and other imaging modalities to determine levels of nodal metastases as well as the site of head and neck involvement. Several groups have used images derived from PET/CT to outline areas of gross disease to receive definitive doses of radiotherapy. Generally, no statistically significant difference exists in the volumes delineated on CT alone versus PET/CT. However, in the studied populations there is often important and significant wide individual variability. The tumors on PET/CT are either larger or smaller than tumors outlined on CT scan only, in the majority of patients. Although areas of controversy include threshold definition and image resolution, the utility of a functional assay in defining target volume helps determine areas to receive higher doses of radiation in cancers of the head and neck. Exciting new functional modalities are emerging to image other parameters including tumor hypoxia, which presents a new target with the same challenges in target delineation as PET/CT.

[1]  D. Heron,et al.  Posttreatment assessment of response using FDG-PET/CT for patients treated with definitive radiation therapy for head and neck cancers. , 2006, International journal of radiation oncology, biology, physics.

[2]  Jean-François Daisne,et al.  Tumor volume in pharyngolaryngeal squamous cell carcinoma: comparison at CT, MR imaging, and FDG PET and validation with surgical specimen. , 2004, Radiology.

[3]  Cyrill Burger,et al.  Radiation treatment planning with an integrated positron emission and computer tomography (PET/CT): a feasibility study. , 2003, International journal of radiation oncology, biology, physics.

[4]  M. Leblanc,et al.  Chemoradiotherapy versus radiotherapy in patients with advanced nasopharyngeal cancer: phase III randomized Intergroup study 0099. , 1998, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[5]  Hubert Vesselle,et al.  FLT: measuring tumor cell proliferation in vivo with positron emission tomography and 3'-deoxy-3'-[18F]fluorothymidine. , 2007, Seminars in nuclear medicine.

[6]  D. Mankoff,et al.  Hypoxia imaging-directed radiation treatment planning , 2006, European Journal of Nuclear Medicine and Molecular Imaging.

[7]  X Allen Li,et al.  Initial experience of FDG-PET/CT guided IMRT of head-and-neck carcinoma. , 2006, International journal of radiation oncology, biology, physics.

[8]  Scott T. Grafton,et al.  PET and [18F]-FDG in oncology: a clinical update. , 1996, Nuclear medicine and biology.

[9]  A. Riegel,et al.  Variability of gross tumor volume delineation in head-and-neck cancer using CT and PET/CT fusion. , 2005, International journal of radiation oncology, biology, physics.

[10]  J. Deasy,et al.  A prospective study of salivary function sparing in patients with head-and-neck cancers receiving intensity-modulated or three-dimensional radiation therapy: initial results. , 2001, International journal of radiation oncology, biology, physics.

[11]  Mithat Gonen,et al.  Head and neck cancer: clinical usefulness and accuracy of PET/CT image fusion. , 2004, Radiology.

[12]  M. Schwaiger,et al.  Hypoxia imaging with FAZA-PET and theoretical considerations with regard to dose painting for individualization of radiotherapy in patients with head and neck cancer. , 2007, International journal of radiation oncology, biology, physics.

[13]  Tohru Shiga,et al.  Image fusion between 18FDG-PET and MRI/CT for radiotherapy planning of oropharyngeal and nasopharyngeal carcinomas. , 2002, International journal of radiation oncology, biology, physics.

[14]  M. Goitein,et al.  Tolerance of normal tissue to therapeutic irradiation. , 1991, International journal of radiation oncology, biology, physics.

[15]  Dwight E Heron,et al.  Hybrid PET-CT simulation for radiation treatment planning in head-and-neck cancers: a brief technical report. , 2004, International journal of radiation oncology, biology, physics.

[16]  G. V. von Schulthess,et al.  Why most PET of lung and head-and-neck cancer will be PET/CT. , 2004, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[17]  David Schuster,et al.  Comparison of CT- and FDG-PET-defined gross tumor volume in intensity-modulated radiotherapy for head-and-neck cancer. , 2005, International journal of radiation oncology, biology, physics.

[18]  Taylor Th Head and neck cancer. , 1994 .

[19]  S. Rafla,et al.  The impact of positron emission tomography/computed tomography in edge delineation of gross tumor volume for head and neck cancers. , 2007, International journal of radiation oncology, biology, physics.

[20]  J. Buatti,et al.  The role of post-radiation therapy FDG PET in prediction of necessity for post-radiation therapy neck dissection in locally advanced head-and-neck squamous cell carcinoma. , 2004, International journal of radiation oncology, biology, physics.

[21]  K. Vineberg,et al.  Dysphagia and aspiration after chemoradiotherapy for head-and-neck cancer: which anatomic structures are affected and can they be spared by IMRT? , 2004, International journal of radiation oncology, biology, physics.

[22]  Cyrill Burger,et al.  [18FDG] PET-CT-based intensity-modulated radiotherapy treatment planning of head and neck cancer. , 2007, International journal of radiation oncology, biology, physics.

[23]  Avraham Eisbruch,et al.  Intensity-modulated radiation therapy (IMRT) for locally advanced paranasal sinus tumors: incorporating clinical decisions in the optimization process. , 2003, International journal of radiation oncology, biology, physics.

[24]  B. Nowak,et al.  Diagnosis and staging of head and neck cancer: a comparison of modern imaging modalities (positron emission tomography, computed tomography, color-coded duplex sonography) with panendoscopic and histopathologic findings. , 2000, Archives of otolaryngology--head & neck surgery.

[25]  R. Blasberg,et al.  Reporter gene imaging: potential impact on therapy. , 2005, Nuclear medicine and biology.

[26]  Yoshimi Anzai,et al.  FDG-PET/CT imaging for preradiotherapy staging of head-and-neck squamous cell carcinoma. , 2005, International journal of radiation oncology, biology, physics.

[27]  R K Ten Haken,et al.  Dose, volume, and function relationships in parotid salivary glands following conformal and intensity-modulated irradiation of head and neck cancer. , 1999, International journal of radiation oncology, biology, physics.

[28]  J. Johansen,et al.  Implication of 18F‐Fluoro‐2‐Deoxy‐D‐Glucose Positron Emission Tomography on Management of Carcinoma of Unknown Primary in the Head and Neck: A Danish Cohort Study , 2002, The Laryngoscope.

[29]  L. Bastholt,et al.  A randomized double-blind phase III study of nimorazole as a hypoxic radiosensitizer of primary radiotherapy in supraglottic larynx and pharynx carcinoma. Results of the Danish Head and Neck Cancer Study (DAHANCA) Protocol 5-85. , 1998, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[30]  B. Cheson,et al.  Positron-emission tomography and assessment of cancer therapy. , 2006, The New England journal of medicine.