Pressure-induced superconductivity in the noncentrosymmetric Weyl semimetals LaAlX (

[1]  Yulin Chen,et al.  Charge Density Wave Orders and Enhanced Superconductivity under Pressure in the Kagome Metal CsV3Sb5 , 2021, Advanced materials.

[2]  C. Felser,et al.  Pressure-induced a Partial Disorder and Superconductivity in Quasi-One-Dimensional Weyl Semimetal (NbSe4)2I , 2021 .

[3]  J. Xia,et al.  A new era of flood control strategies from the perspective of managing the 2020 Yangtze River flood , 2020, Science China Earth Sciences.

[4]  D. Graf,et al.  High Fermi velocities and small cyclotron masses in LaAlGe , 2020, 2012.05234.

[5]  Daniel S. Sanchez,et al.  Observation of Weyl fermions in a magnetic non-centrosymmetric crystal , 2020, Nature Communications.

[6]  L. Balents,et al.  Singular angular magnetoresistance in a magnetic nodal semimetal , 2019, Science.

[7]  Z. Fang,et al.  Topological electronic states in HfRuP family superconductors , 2019, npj Computational Materials.

[8]  Y. Qiu,et al.  Large anomalous Hall effect in ferromagnetic Weyl semimetal candidate PrAlGe , 2019, APL Materials.

[9]  Matthias Troyer,et al.  WannierTools: An open-source software package for novel topological materials , 2017, Comput. Phys. Commun..

[10]  Su-Yang Xu,et al.  Discovery of Lorentz-violating type II Weyl fermions in LaAlGe , 2017, Science Advances.

[11]  C. Felser,et al.  Pressure-induced superconductivity and topological quantum phase transitions in a quasi-one-dimensional topological insulator: Bi4I4 , 2017, npj Quantum Materials.

[12]  Wenge Yang,et al.  Concurrence of superconductivity and structure transition in Weyl semimetal TaP under pressure , 2016, npj Quantum Materials.

[13]  Claudia Felser,et al.  Topological Quantum Phase Transition and Superconductivity Induced by Pressure in the Bismuth Tellurohalide BiTeI , 2016, Advanced materials.

[14]  M. Salamon,et al.  Superconductivity and spin–orbit coupling in non-centrosymmetric materials: a review , 2016, Reports on progress in physics. Physical Society.

[15]  C. Felser,et al.  Superconductivity in Weyl semimetal candidate MoTe2 , 2015, Nature Communications.

[16]  Wenge Yang,et al.  Pressure-induced superconductivity in a three-dimensional topological material ZrTe5 , 2015, Proceedings of the National Academy of Sciences.

[17]  M. Freedman,et al.  Majorana zero modes and topological quantum computation , 2015, npj Quantum Information.

[18]  Arash A. Mostofi,et al.  An updated version of wannier90: A tool for obtaining maximally-localised Wannier functions , 2014, Comput. Phys. Commun..

[19]  M. Leijnse,et al.  Introduction to topological superconductivity and Majorana fermions , 2012, 1206.1736.

[20]  C. Beenakker,et al.  Search for Majorana Fermions in Superconductors , 2011, 1112.1950.

[21]  I. Shirotani Superconductivity of Ternary Metal Compounds Prepared at High Pressures , 2003 .

[22]  T. Yagi,et al.  Superconductivity of the ternary ruthenium compounds HfRuP and ZrRuX (X = P, As, Si or Ge) prepared at a high pressure , 1999 .

[23]  J. Corbett,et al.  Syntheses and structures of lanthanum germanide, LaGe2-x, and lanthanum aluminum germanide, LaAlGe: interrelationships among the .alpha.-ThSi2, .alpha.-GdSi2, and LaPtSi structure types , 1991 .

[24]  H. Braun SUPERCONDUCTIVITY IN TERNARY RARE EARTH-TRANSITION METAL SILICIDES: A CRITICAL REVIEW , 1984 .

[25]  Z. Fisk,et al.  Ternary transition metal phosphides: High-temperature superconductors. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[26]  M. Sigrist,et al.  Non-Centrosymmetric Superconductors , 2012 .

[27]  A. P. Hammersley,et al.  Two-dimensional detector software: From real detector to idealised image or two-theta scan , 1996 .