Binder Chemistry – Blended Systems and Intermediate Ca Content

Following the discussion in the two preceding chapters, which addressed high-calcium and low-calcium alkali-activated binder systems respectively, this chapter will provide a brief discussion of the progress which has been made in the development and characterisation of hybrid binders derived from intermediate-Ca precursors and mixtures of precursors. The need for durable, high-performance, low-CO2 alternative binder systems, along with the good existing understanding of the chemical mechanisms of mechanical strength development and durability of high-calcium and low-calcium alkali-activated materials (AAMs) as outlined in Chaps. 3 and 4, has given motivation for an increasing focus on hybrid systems over the past years. These binders are expected to provide a good synergy between mechanical strength and durability, making use of the stable coexistence of the hydration-reaction products characteristic of hydration of Portland clinker or alkali-activated BFS (mainly C-S-H gels) and alkali-activated aluminosilicates (geopolymeric gel) [1–3]. Blending of aluminosilicate-rich materials with more reactive calcium sources (including Portland cement clinker) and with the use of a source of alkalis also opens the possibility for the use of aluminosilicate wastes or by-products which may be insufficiently reactive to provide good strength development when activated alone, providing a pathway to valorisation for these materials.

[1]  M. Moranville-Regourd,et al.  Synthesis of the U phase (4CaO . 0.9Al2O3 . 1.1SO3 . 0.5Na2O . 16H2O) , 1997 .

[2]  Paulo J.M. Monteiro,et al.  The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers , 2010 .

[3]  P. Svoboda,et al.  Assessment of phase formation in alkali activated low and high calcium fly ashes in building materials , 2010 .

[4]  C. Shi,et al.  Chemical activation of blended cements made with lime and natural pozzolans , 1993 .

[5]  S. Donatello,et al.  Very High Volume Fly Ash Cements. Early Age Hydration Study Using Na2SO4 as an Activator , 2013 .

[6]  A. Fernández-Jiménez,et al.  FTIR study of the sol–gel synthesis of cementitious gels: C–S–H and N–A–S–H , 2008 .

[7]  M. Moranville,et al.  Expansion mechanism associated with the secondary formation of the U phase in cement-based systems containing high amounts of Na2SO4 , 1996 .

[8]  M. Moranville,et al.  The U phase formation in cement-based systems containing high amounts of Na2SO4 , 1996 .

[9]  Zhihua Pan,et al.  Hydration products of alkali-activated slag–red mud cementitious material , 2002 .

[10]  S. Alonso,et al.  Calorimetric study of alkaline activation of calcium hydroxide–metakaolin solid mixtures , 2001 .

[11]  John L. Provis,et al.  Microscopy and microanalysis of inorganic polymer cements. 1: remnant fly ash particles , 2009, Journal of Materials Science.

[12]  Xinyuan Ke,et al.  Influence of thermal treatment on phase transformation and dissolubility of aluminosilicate phase in red mud , 2012 .

[13]  J. Monzó,et al.  Novel geopolymeric material cured at room temperature , 2013 .

[14]  Jian Yu,et al.  Properties and microstructure of the hardened alkali-activated red mud–slag cementitious material , 2003 .

[15]  Alexander J. Moseson,et al.  High volume limestone alkali-activated cement developed by design of experiment , 2012 .

[16]  Caijun Shi,et al.  Pozzolanic reaction in the presence of chemical activators: Part II — Reaction products and mechanism , 2000 .

[17]  M. Barsoum,et al.  Diatomaceous Earth as a Pozzolan in the Fabrication of an Alkali-Activated Fine-Aggregate Limestone Concrete , 2010 .

[18]  Y. Fu,et al.  Effect of different inorganic salts/alkali on conversion-prevention in high alumina cement products , 1996 .

[19]  F. Puertas,et al.  Mineralogical and microstructural characterisation of alkali-activated fly ash/slag pastes , 2003 .

[20]  K. MacKenzie,et al.  Structure and mechanical properties of aluminosilicate geopolymer composites with Portland cement and its constituent minerals , 2010 .

[21]  L. Keyte Fly ash glass chemistry and inorganic polymer cements , 2009 .

[22]  Jerry Stephens,et al.  Performance of 100% Fly Ash Concrete with 100% Recycled Glass Aggregate , 2011 .

[23]  Sanjay Kumar,et al.  Development of paving blocks from synergistic use of red mud and fly ash using geopolymerization , 2013 .

[24]  C. Shi Early microstructure development of activated lime-fly ash pastes , 1996 .

[25]  V. Rose,et al.  High‐Resolution X‐ray Diffraction and Fluorescence Microscopy Characterization of Alkali‐Activated Slag‐Metakaolin Binders , 2013 .

[26]  G. Osborne,et al.  SLAG/FLY ASH CEMENTS , 1977 .

[27]  S. Martínez-Ramírez,et al.  OPC hydration with highly alkaline solutions , 2001 .

[28]  John L. Provis,et al.  Drying-induced changes in the structure of alkali-activated pastes , 2013, Journal of Materials Science.

[29]  John L. Provis,et al.  Carbonate mineral addition to metakaolin-based geopolymers , 2008 .

[30]  M. Blanco-Varela,et al.  Alkaline Activation of Metakaolin: Effect of Calcium Hydroxide in the Products of Reaction , 2004 .

[31]  M. Gordillo,et al.  Modeling of the compressive strength of alternative concretes using the response surface methodology , 2009 .

[32]  K. Ikeda,et al.  Alkaline Activation of Blends of Metakaolin and Calcium Aluminate , 2008 .

[33]  J. I. Escalante-García,et al.  Statistical Analysis of Strength Development as a Function of Various Parameters on Activated Metakaolin/Slag Cements , 2010 .

[34]  N. Henson,et al.  In situ synchrotron X-ray pair distribution function analysis of the early stages of gel formation in metakaolin-based geopolymers , 2013 .

[35]  John L. Provis,et al.  Pore solution composition and alkali diffusion in inorganic polymer cement , 2010 .

[36]  J. Temuujin,et al.  Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes. , 2009, Journal of hazardous materials.

[37]  Frank Winnefeld,et al.  Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags , 2011 .

[38]  V. Rose,et al.  Evolution of binder structure in sodium silicate-activated slag-metakaolin blends , 2011 .

[39]  A. Fernández-Jiménez,et al.  Opc-fly ash cementitious systems: study of gel binders produced during alkaline hydration , 2007 .

[40]  D. Macphee,et al.  Effect of Alkalis on Fresh C-S-H Gels. FTIR Analysis , 2009 .

[41]  J. Blaakmeer Diabind: An alkali-activated slag fly ash binder for acid-resistant concrete , 1994 .

[42]  J. Biernacki,et al.  Microanalysis of alkali-activated fly ash–CH pastes , 2002 .

[43]  C. Shi,et al.  Pozzolanic reaction in the presence of chemical activators. Part I. Reaction kinetics , 2000 .

[44]  R. Cloots,et al.  Synthesis and characterization of new inorganic polymeric composites based on kaolin or white clay and on ground-granulated blast furnace slag , 2003 .

[45]  J. Deventer,et al.  The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation , 2005 .

[46]  Adam R. Kilcullen,et al.  Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated , 2013 .

[47]  C. Yip,et al.  Microanalysis of calcium silicate hydrate gel formed within a geopolymeric binder , 2003 .

[48]  Erich D. Rodríguez,et al.  Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends , 2011, Journal of Materials Science.

[49]  C. Kaps,et al.  Alkali-activated metakaolin-slag blends—performance and structure in dependence of their composition , 2007 .

[50]  I. Giannopoulou,et al.  UTILIZATION OF ALUMINA RED MUD FOR SYNTHESIS OF INORGANIC POLYMERIC MATERIALS , 2009 .

[51]  D. Macphee,et al.  Effect on Fresh C-S-H gels of the Simultaneous Addition of Alkali and Aluminium , 2010 .

[52]  John L. Provis,et al.  Effect of Calcium Silicate Sources on Geopolymerisation , 2008 .

[53]  J. I. Escalante García,et al.  Cementitious composites of pulverised fuel ash and blast furnace slag activated by sodium silicate: effect of Na2O concentration and modulus , 2006 .

[54]  K. Folliard,et al.  Heat of Hydration Models for Cementitious Materials , 2005 .

[55]  V. Rose,et al.  Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags , 2010 .

[56]  S. Martínez-Ramírez,et al.  Microstructure studies on Portland cement pastes obtained in highly alkaline environments , 2001 .

[57]  Warren A. Dick,et al.  Compressive strength and microstructural characteristics of class C fly ash geopolymer , 2010 .

[58]  Caijun Shi,et al.  Acceleration of the reactivity of fly ash by chemical activation , 1995 .

[59]  S. P. Mehrotra,et al.  Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer , 2010, Journal of Materials Science.

[60]  Ali Allahverdi,et al.  Efflorescence control in geopolymer binders based on natural pozzolan , 2012 .

[61]  P. Brown,et al.  Calorimetric Study of Cement Blends Containing Fly Ash, Silica Fume, and Slag at Elevated Temperatures , 1994 .

[62]  D. Stephan,et al.  Reaction progress of alkaline-activated metakaolin-ground granulated blast furnace slag blends , 2009 .

[63]  Zhang Yunsheng,et al.  Synthesis and heavy metal immobilization behaviors of slag based geopolymer. , 2007, Journal of hazardous materials.

[64]  Louise Keyte What's wrong with Tarong?: the importance of coal fly ash glass chemistry in inorganic polymer synthesis , 2008 .

[65]  John L. Provis,et al.  Microscopy and microanalysis of inorganic polymer cements. 2: the gel binder , 2009, Journal of Materials Science.

[66]  Wenbiao Sun,et al.  Effect of distortion degree on the hydration of red mud base cementitious material , 2009 .

[67]  C. Shi,et al.  Increasing Coal Fly Ash Use in Cement and Concrete Through Chemical Activation of Reactivity of Fly Ash , 2003 .

[68]  A. Shayan,et al.  Early hydration of a portland cement in water and sodium hydroxide solutions: Composition of solutions and nature of solid phases , 1989 .

[69]  C. Shi,et al.  Comparison of different methods for enhancing reactivity of pozzolans , 2001 .

[70]  T. Cheng,et al.  Fire-resistant geopolymer produced by granulated blast furnace slag , 2003 .

[71]  S. Martínez-Ramírez,et al.  Alkali-activated fly ash/slag cements: Strength behaviour and hydration products , 2000 .

[72]  Sifeng Liu,et al.  Influence of Slag as Additive on Compressive Strength of Fly Ash-Based Geopolymer , 2007 .

[73]  Steve Hodges,et al.  Building innovation through geopolymer technology , 2005 .

[74]  R. R. Lloyd,et al.  The durability of inorganic polymer cements , 2008 .

[75]  Erez N. Allouche,et al.  Mechanical Properties of Fly-Ash-Based Geopolymer Concrete , 2011 .

[76]  Aaron R. Sakulich,et al.  Mechanical and microstructural characterization of an alkali-activated slag/limestone fine aggregate concrete , 2009 .

[77]  C. Schauer,et al.  Influence of Si:Al ratio on the microstructural and mechanical properties of a fine-limestone aggregate alkali-activated slag concrete , 2010 .

[78]  C. Shi,et al.  New cements for the 21st century: The pursuit of an alternative to Portland cement , 2011 .

[79]  Á. Palomo,et al.  Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O–CaO–Al2O3–SiO2–H2O , 2011 .

[80]  John L. Provis,et al.  Technical and commercial progress in the adoption of geopolymer cement , 2012 .

[81]  J. Deventer,et al.  Acid resistance of inorganic polymer binders. 1. Corrosion rate , 2012 .

[82]  S. Alonso,et al.  Alkaline activation of metakaolin and calcium hydroxide mixtures: influence of temperature, activator concentration and solids ratio , 2001 .

[83]  A. Fernández-Jiménez,et al.  Clay reactivity: Production of alkali activated cements , 2013 .

[84]  Philip G. Malone,et al.  Construction Productivity Advancement Research (CPAR) Program. Performance of Concretes Proportioned with Pyrament Blended Cement , 1994 .

[85]  J. Bijen,et al.  Alkali-Activated Slag--Fly Ash Cements , 1989, "SP-114: Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete: Proceedings of the Third International Conference".

[86]  A. Brykov,et al.  Specific features of portland cement hydration in the presence of sodium hydrosilicates , 2006 .

[87]  M. Weil,et al.  The influence of calcium content on the structure and thermal performance of fly ash based geopolymers , 2007 .

[88]  A. Wagh,et al.  Silicate bonded unsintered ceramics of Bayer process waste , 1991 .

[89]  John L. Provis,et al.  Engineering and durability properties of concretes based on alkali-activated granulated blast furnac , 2012 .

[90]  Rupert J. Myers,et al.  X-ray microtomography shows pore structure and tortuosity in alkali-activated binders , 2012 .

[91]  John L. Provis,et al.  Spatial distribution of pores in fly ash-based inorganic polymer gels visualised by Wood’s metal intrusion , 2009 .