Does photosensitivity pave the way towards the fabrication of miniature coherent light sources in inorganic glass waveguides

Abstract Photosensitivity designates the ability to permanently change the refractive index of a glass by optical processing. The phenomenon allows the fabrication of numerous phase structures, the simplest of which is the Bragg grating obtained by photoimprinting a periodic index modulation within the material. Bragg gratings have changed the way in which optical fibre (or planar waveguide) lasers are now used. Distributed Bragg Reflector (DBR) or Distributed Feed Back (DFB) lasers, when intracore Bragg gratings are used for linear cavity feedback, are commonly fabricated in rare earth doped optical silica-based fibres. On the other hand, photosensitivity can also result in effects which can prove to be detrimental to the fabrication of miniature coherent light sources. The paper will cover some of the advances that have been made in improving the photosensitivity of inorganic glasses, in searching new photosensitive materials and in characterizing Bragg grating properties relevant to laser applications.

[1]  Mk Meint Smit,et al.  Net optical gain at 1.53 mu m in Er-doped Al2O3 waveguides on silicon , 1996 .

[2]  D. Hand,et al.  Photoinduced refractive-index changes in germanosilicate fibers. , 1990, Optics letters.

[3]  J. Canning,et al.  Incoherent scattering losses in optical fiber Bragg gratings. , 1996, Optics letters.

[4]  Victor Mizrahi,et al.  Ultraviolet laser fabrication of strong, nearly polarization‐independent Bragg reflectors in germanium‐doped silica waveguides on silica substrates , 1994 .

[5]  W. A. Reed,et al.  Ultraviolet laser fabrication of ultrastrong optical fiber gratings and of germania‐doped channel waveguides , 1993 .

[6]  B. G. Potter,et al.  Photosensitivity of solgel-derived germanosilicate planar waveguides. , 1993, Optics letters.

[7]  E. Delevaque,et al.  Analysis of color-center-related contribution to Bragg grating formation in Ge:SiO 2 fiber based on a local Kramers -Kronig transformation of excess loss spectra. , 1997, Applied optics.

[8]  Michel J. F. Digonnet Kramers-Kronig analysis of the absorption change in fiber gratings , 1996, Optics & Photonics.

[9]  Raman Kashyap,et al.  Photosensitive germanosilicate preforms and fibers , 1991, Other Conferences.

[10]  Graeme Maxwell,et al.  Demonstration of a directly written directional coupler using UV-induced photosensitivity in a planar silica waveguide , 1995 .

[11]  Takashi Handa,et al.  Aluminum or phosphorus co‐doping effects on the fluorescence and structural properties of neodymium‐doped silica glass , 1986 .

[12]  D N Payne,et al.  Er(3+):Yb(3+)-codoped fiber distributed-feedback laser. , 1994, Optics letters.

[13]  Jacques Albert,et al.  Single-frequency Er3+-doped silica-based planar waveguide laser with integrated photo-imprinted Bragg reflectors , 1994 .

[14]  Graeme Maxwell,et al.  UV written 1.5 mu m reflection filters in single mode planar silica guides , 1992 .

[15]  D. Piehler,et al.  11.7 mW green InGaAs-laser-pumped erbium fibre laser , 1994 .

[16]  Bertrand Poumellec,et al.  Experimental evidence of two types of photorefractive effects occuring during photoinscriptions of Bragg gratings within germanosilicate fibres , 1993 .

[17]  Bertrand Poumellec,et al.  Behaviour of spectral transmissions of Bragg gratings written in germania-doped fibres: writing and erasing experiments using pulsed or cw uv exposure , 1994 .

[18]  David J. Moss,et al.  Photosensitivity of Ge-doped silica deposited by hollow cathode PECVD , 1996 .

[19]  R. Kashyap Photosensitive Optical Fibers: Devices and Applications , 1994 .

[20]  Bertrand Poumellec,et al.  Densification involved in the UV-based photosensitivity of silica glasses and optical fibers , 1997 .

[21]  Yasutake Ohishi,et al.  Fabrication of praseodymium‐doped arsenic sulfide chalcogenide fiber for 1.3‐μm fiber amplifiers , 1994 .

[22]  Bertrand Poumellec,et al.  UV induced densification during Bragg grating inscription in Ge:SiO2 preforms , 1995 .

[23]  Victor Mizrahi,et al.  Characterization of UV-induced birefringence in photosensitive Ge-doped silica optical fibers , 1994 .

[24]  G. Meltz,et al.  Photoinduced Bragg Gratings in Optical Fibers , 1994 .

[25]  David N. Payne,et al.  Rare-earth doped chalcogenide glass fibre laser , 1997 .

[26]  John D. Love,et al.  UV-induced index change in hydrogen-free germano-silicate waveguides , 1996 .

[27]  Jacques Albert,et al.  Modification of the properties of silica glasses by ion implantation , 1997, Photonics West.

[28]  S. Boj,et al.  OPTICAL FIBER DESIGN FOR STRONG GRATINGS PHOTOIMPRINTING WITH RADIATION MODE SUPPRESSION , 1995 .

[29]  P. Russell,et al.  Photochromic dynamics and nonlinear transmission at modulated CW blue/green wavelengths in germanosilicate optical fibres , 1988 .

[30]  M. Douay,et al.  Thermal hysteresis of Bragg wavelengths of intra-core fiber gratings , 1993, IEEE Photonics Technology Letters.

[31]  Heather Patrick,et al.  Annealing of Bragg gratings in hydrogen‐loaded optical fiber , 1995 .

[32]  Pascal Bernage,et al.  Efficiency and thermal behaviour of cerium-doped fluorozirconate glass fibre Bragg gratings , 1994 .

[33]  Don Monroe,et al.  DECAY OF ULTRAVIOLET-INDUCED FIBER BRAGG GRATINGS , 1994 .

[34]  F. Bilodeau,et al.  Photosensitivity in Optical Fibers , 1993 .

[35]  Optical power transversely scattered from fiber Bragg gratings: far-field measurements and modeling , 1997 .

[36]  David N. Payne,et al.  Ultraviolet absorption in modified chemical vapor deposition preforms , 1994 .

[37]  P.K. Cheo,et al.  Modeling of short, single-frequency, fiber lasers in high-gain fiber , 1993, IEEE Photonics Technology Letters.

[38]  J. Nishii,et al.  Preparation of Bragg gratings in sputter-deposited GeO(2)-SiO(2) glasses by excimer-laser irradiation. , 1996, Optics letters.

[39]  Marc Douay,et al.  Photoinscription of Bragg gratings within preform plates of high NA germanosilicate fibers : searching for an experimental evidence of type II A photosensitivity in preform plates , 1996 .

[40]  D N Payne,et al.  Strong photosensitive gratings in tin-doped phosphosilicate optical fibers. , 1995, Optics letters.

[41]  D C Johnson,et al.  Photosensitivity in Ge-doped silica optical waveguides and fibers with 193-nm light from an ArF excimer laser. , 1994, Optics letters.

[42]  Hans G. Limberger,et al.  Compaction- and photoelastic-induced index changes in fiber Bragg gratings , 1996 .

[43]  Albert Polman,et al.  Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 µm , 1997 .

[44]  Rene-Paul Salathe,et al.  Mechanical degradation of optical fibers induced by UV light , 1996, Optics & Photonics.

[45]  P. Lemaire,et al.  High pressure H/sub 2/ loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO/sub 2/ doped optical fibres , 1993 .

[46]  Marc Douay,et al.  Ultraviolet-enhanced photosensitivity in cerium-doped aluminosilicate fibers and glasses through high-pressure hydrogen loading , 1997 .

[47]  R. Powell,et al.  Optical applications of laser-induced gratings in Eu doped glasses. , 1990, Applied optics.

[48]  Bertrand Poumellec,et al.  Bragg grating inscriptions within strained monomode high NA germania-doped fibres: part I. Experimentation , 1997 .

[49]  Bertrand Poumellec,et al.  The UV-induced refractive index grating in Ge: preforms: additional CW experiments and the macroscopic origin of the change in index , 1996 .

[50]  K. Hill,et al.  Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication , 1978 .

[51]  D C Johnson,et al.  Refractive-index changes in fused silica produced by heavy-ion implantation followed by photobleaching. , 1992, Optics letters.

[52]  Jörg Hübner,et al.  Characterisation of dispersion properties in planar waveguides using UV-induced Bragg gratings , 1995 .

[53]  R P Salathé,et al.  Tension increase correlated to refractive-index change in fibers containing UV-written Bragg gratings. , 1995, Optics letters.

[54]  P. Russell,et al.  100% reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses , 1993 .

[55]  W A Reed,et al.  Birefringence reduction in side-written photoinduced fiber devices by a dual-exposure method. , 1994, Optics letters.

[56]  H. N. Rourke,et al.  Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber , 1997 .

[57]  Bertrand Poumellec,et al.  UV induced densification during Bragg grating inscription in Ge:SiO2 preforms: interferometric microscopy investigations , 1995 .

[58]  Jacques Albert,et al.  Photosensitivity in phosphorus‐doped silica glass and optical waveguides , 1994 .

[59]  Itaru Yokohama,et al.  Fabrication of Bragg grating in chalcogenide glass fibre using the transverse holographic method , 1996 .

[60]  Liang Dong,et al.  Annealing of gratings photowritten in tin-codoped germanosilicate preform plates and fibers , 1997, Photonics West.

[61]  Simon Poole,et al.  Photolytic Index Changes in Optical Fibers , 1993 .

[62]  L. Reekie,et al.  Enhanced photosensitivity in tin-codoped germanosilicate optical fibers , 1995, IEEE Photonics Technology Letters.

[63]  W. A. Reed,et al.  Thermally enhanced ultraviolet photosensitivity in GeO2 and P2O5 doped optical fibers , 1995 .

[64]  G. Meltz,et al.  Formation of Bragg gratings in optical fibers by a transverse holographic method. , 1989, Optics letters.

[65]  J. Canning,et al.  Transient and permanent gratings in phosphosilicate optical fibers produced by the flash condensation technique. , 1995, Optics letters.

[66]  Steven T. Davey,et al.  All-fibre narrowband reflection gratings at 1500 nm , 1990 .

[67]  Jacques Albert,et al.  Comparison of one‐photon and two‐photon effects in the photosensitivity of germanium‐doped silica optical fibers exposed to intense ArF excimer laser pulses , 1995 .

[68]  R. Kashyap,et al.  Enhanced UV photosensitivity in boron codoped germanosilicate fibres , 1993 .

[69]  G. A. Ball,et al.  Compression-tuned single-frequency Bragg grating fiber laser. , 1994 .

[70]  D. Pureur,et al.  Characterization of the light scattered from type IIA phase gratings , 1996, Optics & Photonics.

[71]  Liang Dong,et al.  Evidence by transmission electron microscopy of densification associated to Bragg grating photoimprinting in germanosilicate optical fibers , 1997 .

[72]  Yingchao Yan,et al.  Luminescence quenching by OH groups in highly Er-doped phosphate glasses , 1995 .

[73]  H. Poignant,et al.  UV induced permanent gratings in Ce3+ or Eu2+ doped PZG glass thin-film waveguides deposited on CaF2 substrates , 1997 .

[74]  D C Johnson,et al.  Photosensitization of optical fiber and silica-on-silicon/silica waveguides. , 1993, Optics letters.

[75]  John E. Sipe,et al.  Optical properties of photosensitive fiber phase gratings , 1993 .

[76]  Kazimierz Jędrzejewski,et al.  Yb3+ sensitised Er3+ doped silica optical fibre with ultrahigh transfer efficiency and gain , 1991 .