Corrections to Thomas-Fermi densities at turning points and beyond.

The semiclassical limit of quantum mechanics has long guided the construction of powerful approximations to quantum problems [1–3]. Both dynamical evolution [4– 6] and spectral properties of quantum systems [7, 8] have been extensively studied with semiclassical approximations. But the asymptotic expansion in powers of ~ is in general singular. Consider the eigenfunctions of a onedimensional potential v(x). The standard semiclassical approach is to find WKB wave functions[9–12] separately in the classically allowed and evanescent regions, linearize the potential near each turning point and match the solutions with connection formulae [1]. Langer[13] found a more elegant solution in the form of a single expression involving the Airy function (Eq. 4). Langer’s approximation is spatially uniform. Its error vanishes in the semiclassical limit for all points in space [14]. A more demanding challenge is to find the number density, n(x), of the lowest N occupied levels. The classical limit may be obtained by replacing the discrete sum by an integral over classical states [1, 15]. The result is the Thomas-Fermi (TF) density [16, 17]:

[1]  Kieron Burke,et al.  Electronic structure via potential functional approximations. , 2011, Physical review letters.

[2]  K. Burke,et al.  Leading corrections to local approximations , 2010, 1002.1351.

[3]  M. Brack,et al.  Semiclassical theory for spatial density oscillations in fermionic systems. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  E. Heller,et al.  Semiclassical ground-state energies of many-electron systems. , 2009, Physical review letters.

[5]  Kieron Burke,et al.  Semiclassical origins of density functionals. , 2008, Physical review letters.

[6]  M. Brack,et al.  Closed-orbit theory of spatial density oscillations in finite fermion systems. , 2008, Physical Review Letters.

[7]  William H. Miller,et al.  Classical‐Limit Quantum Mechanics and the Theory of Molecular Collisions , 2007 .

[8]  D. Tannor,et al.  Introduction to Quantum Mechanics: A Time-Dependent Perspective , 2006 .

[9]  K. Burke,et al.  Relevance of the slowly varying electron gas to atoms, molecules, and solids. , 2006, Physical review letters.

[10]  E. Heller,et al.  Guided Gaussian wave packets. , 2006, Accounts of chemical research.

[11]  Manuel Soares,et al.  Airy Functions And Applications To Physics , 2004 .

[12]  B. Englert Semiclassical theory of atoms , 1988 .

[13]  E. Lieb Thomas-fermi and related theories of atoms and molecules , 1981 .

[14]  B. Crowley Some generalisations of the Poisson summation formula , 1979 .

[15]  S. Orszag,et al.  Advanced Mathematical Methods For Scientists And Engineers , 1979 .

[16]  M. Berry,et al.  Closed orbits and the regular bound spectrum , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[17]  J. Light,et al.  Uniform semiclassical approximation to the electron density distribution , 1975 .

[18]  E. Fermi A Statistical Method for the Determination of Some Atomic Properties and the Application of this Method to the Theory of the Periodic System of Elements , 1975 .

[19]  N. Balazs,et al.  Quantum oscillations in the semiclassical fermion μ-space density , 1973 .

[20]  J. Light,et al.  Quantum path integrals and reduced fermion density matrices: One‐dimensional noninteracting systems , 1973 .

[21]  Michael V Berry,et al.  Semiclassical approximations in wave mechanics , 1972 .

[22]  M. Gutzwiller,et al.  Periodic Orbits and Classical Quantization Conditions , 1971 .

[23]  A. G. Greenhill,et al.  Handbook of Mathematical Functions with Formulas, Graphs, , 1971 .

[24]  W. Miller Uniform Semiclassical Approximations for Elastic Scattering and Eigenvalue Problems , 1968 .

[25]  M. Berry,et al.  UNIFORM APPROXIMATION FOR POTENTIAL SCATTERING INVOLVING A RAINBOW. , 1966 .

[26]  R. Grover Asymptotic Expansions of the Dirac Density Matrix , 1966 .

[27]  Walter Kohn,et al.  Quantum Density Oscillations in an Inhomogeneous Electron Gas , 1965 .

[28]  H. Payne Approximation of the Dirac Density Matrix , 1964 .

[29]  H. Payne Nature of the Quantum Corrections to the Statistical Model , 1963 .

[30]  L. Alfred Quantum-Corrected Statistical Method for Many-Particle Systems: The Density Matrix , 1961 .

[31]  N. H. March,et al.  The relation between the Wentzel-Kramers-Brillouin and the Thomas-Fermi approximations , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[32]  Rudolph E. Langer,et al.  On the Connection Formulas and the Solutions of the Wave Equation , 1937 .

[33]  Philip M. Morse,et al.  On the Vibrations of Polyatomic Molecules , 1932 .

[34]  L. H. Thomas The calculation of atomic fields , 1927, Mathematical Proceedings of the Cambridge Philosophical Society.

[35]  H. A. Kramers,et al.  Wellenmechanik und halbzahlige Quantisierung , 1926 .

[36]  L. Brillouin,et al.  La mécanique ondulatoire de Schrödinger; une méthode générale de resolution par approximations successives , 1926 .

[37]  Gregor Wentzel,et al.  Eine Verallgemeinerung der Quantenbedingungen für die Zwecke der Wellenmechanik , 1926 .

[38]  H. Jeffreys On Certain Approximate Solutions of Lineae Differential Equations of the Second Order , 1925 .