Fusion alpha parameters in tokamaks with high DT fusion rates

Fusion alpha parameters are calculated for tokamaks with high DT fusion rates using the TRANSP plasma analysis code. Parameters include the fast alpha density nα, fast alpha pressure normalized to magnetic field energy βα, and its normalized gradient −R×∇(βα). The plasma conditions are taken from the plasmas in TFTR and JET with the highest DT fusion rates, and from plasmas in the proposed IGNITOR, FIRE, and ITER-FEAT tokamaks.

[1]  P. Stangeby The Plasma Boundary of Magnetic Fusion Devices , 2000 .

[2]  M. Rosenbluth,et al.  Model for the sawtooth period and amplitude , 1996 .

[3]  R. Budny,et al.  Analysis of alpha particle‐driven toroidal Alfvén eigenmodes in Tokamak Fusion Test Reactor deuterium–tritium experiments , 1996 .

[4]  Arnold H. Kritz,et al.  Predicting temperature and density profiles in tokamaks , 1998 .

[5]  W. Tang,et al.  HINST: A two-dimensional code for high-n toroidicity induced Alfvén eigenmodes stability , 1998 .

[6]  Robert V. Budny,et al.  TRANSP simulations of International Thermonuclear Experimental Reactor plasmas , 1996 .

[7]  W. Houlberg,et al.  Bootstrap current and neoclassical transport in tokamaks of arbitrary collisionality and aspect ratio , 1997 .

[8]  D. J. Campbell,et al.  The physics of the International Thermonuclear Experimental Reactor FEAT , 2001 .

[9]  A. T. Ramsey,et al.  Transport measurements for confined non-thermal alpha particles in TFTR DT plasmas , 1997 .

[10]  S. Jardin,et al.  Dynamic modeling of transport and positional control of tokamaks , 1986 .

[11]  D. J. Campbell,et al.  Chapter 1: Overview and summary , 1999 .

[12]  W. Horton,et al.  Ignitor physics assessment and confinement projections , 2002 .

[13]  W. Kerner,et al.  Plasma confinement in JET H?mode plasmas with H, D, DT and T isotopes , 1999 .

[14]  R. J. Hawryluk,et al.  Results from deuterium-tritium tokamak confinement experiments , 1997 .

[15]  R. Budny,et al.  Neutral beam stabilization of sawtooth oscillations in JET , 2002 .

[16]  A. Airoldi,et al.  Consistency of the pressure profile at ignition in Ignitor , 2001 .

[17]  Douglass E. Post,et al.  Steady-state radiative cooling rates for low-density, high-temperature plasmas , 1977 .

[18]  D. McCune,et al.  New techniques for calculating heat and particle source rates due to neutral beam injection in axisymmetric tokamaks , 1981 .

[19]  B. Coppi,et al.  Optimal regimes for ignition and the Ignitor experiment , 2001 .

[20]  Local physics basis of confinement degradation in JET ELMy H mode plasmas and implications for tokamak reactors , 2000 .

[21]  R. Waltz,et al.  A gyro-Landau-fluid transport model , 1997 .

[22]  G. Fu,et al.  Stability of the toroidicity‐induced Alfvén eigenmode in axisymmetric toroidal equilibria , 1993 .

[23]  W. Kerner,et al.  CORRIGENDUM: Stability of alpha particle driven Alfvén eigenmodes in high performance JET DT plasmas , 1999 .

[24]  W. Kerner,et al.  High fusion performance from deuterium-tritium plasmas in JET , 1999 .

[25]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[26]  R. Budny,et al.  Confined trapped alpha behaviour in TFTR deuterium-tritium plasmas , 1998 .

[27]  D. Van Eester,et al.  Re-evaluation of ITER ion cyclotron operating scenarios , 2002 .

[28]  M. G. Bell,et al.  Simulations of alpha parameters in a TFTR DT supershot with high fusion power , 1995 .

[29]  A. Airoldi,et al.  Approach to ignition in the ignitor experiment , 1997 .

[30]  R. Budny,et al.  Study of thermonuclear Alfvén instabilities in next step burning plasma proposals , 2003 .