A Characteristic Mapping Method for Transport on the Sphere

A semi-Lagrangian method for the solution of the transport equation on a sphere is presented. The method evolves the inverse flow-map using the Characteristic Mapping (CM) [1] and Gradient-Augmented Level Set (GALS) [2] frameworks. Transport of the advected quantity is then computed by composition with the numerically approximated inverse flow-map. This framework allows for the advection of complicated sets and multiple quantities with arbitrarily fine-features using a coarse computational grid. We discuss the CM method for linear transport on the sphere and its computational implementation. Standard test cases for solid body rotation, deformational and divergent flows, and numerical mixing are presented. The unique features of the method are demonstrated by the transport of a multi-scale function and a fractal set in a complex flow environment.

[1]  P. Welander,et al.  Studies on the General Development of Motion in a Two‐Dimensional, Ideal Fluid , 1955 .

[2]  Paul N. Swarztrauber,et al.  The Approximation of Vector Functions and Their Derivatives on the Sphere , 1981 .

[3]  P. Rasch,et al.  Two-dimensional semi-Lagrangian trans-port with shape-preserving interpolation , 1989 .

[4]  Jean-Christophe Nave,et al.  A new method for the level set equation using a hierarchical-gradient truncation and remapping technique , 2013, Comput. Phys. Commun..

[5]  Michael J Prather,et al.  Quantifying errors in trace species transport modeling , 2008, Proceedings of the National Academy of Sciences.

[6]  C. Jablonowski,et al.  Moving Vortices on the Sphere: A Test Case for Horizontal Advection Problems , 2008 .

[7]  A. Staniforth,et al.  Semi-Lagrangian integration schemes for atmospheric models - A review , 1991 .

[8]  Jean Côté,et al.  Cascade interpolation for semi‐Lagrangian advection over the sphere , 1999 .

[9]  Christophe Picard,et al.  HIGH ORDER SEMI-LAGRANGIAN PARTICLE METHODS FOR TRANSPORT EQUATIONS: NUMERICAL ANALYSIS AND IMPLEMENTATION ISSUES , 2014 .

[10]  J. Lamarque,et al.  CAM-chem: description and evaluation of interactive atmospheric chemistry in the Community Earth System Model , 2012 .

[11]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[12]  Peter H. Lauritzen,et al.  A hybrid Eulerian–Lagrangian numerical scheme for solving prognostic equations in fluid dynamics , 2013 .

[13]  Marjorie Perlman,et al.  Accuracy of vortex methods , 1983 .

[14]  Georges-Henri Cottet,et al.  Accurate, non-oscillatory, remeshing schemes for particle methods , 2012, J. Comput. Phys..

[15]  P. Frederickson,et al.  Icosahedral Discretization of the Two-Sphere , 1985 .

[16]  Frederick G. Shuman On Certain Truncation Errors Associated with Spherical Coordinates , 1970 .

[17]  Benjamin Seibold,et al.  A gradient-augmented level set method with an optimally local, coherent advection scheme , 2009, J. Comput. Phys..

[18]  Robert Krasny,et al.  A Lagrangian particle method with remeshing for tracer transport on the sphere , 2017, J. Comput. Phys..

[19]  Lei Wang,et al.  RBF-vortex methods for the barotropic vorticity equation on a sphere , 2015, J. Comput. Phys..

[20]  L. Barba,et al.  Advances in viscous vortex methods—meshless spatial adaption based on radial basis function interpolation , 2005 .

[21]  Peter Andrew Bosler,et al.  Particle Methods for Geophysical Flow on the Sphere. , 2013 .

[22]  Grady B. Wright,et al.  Mesh-free Semi-Lagrangian Methods for Transport on a Sphere Using Radial Basis Functions , 2018, J. Comput. Phys..

[23]  Erik Lehto,et al.  Rotational transport on a sphere: Local node refinement with radial basis functions , 2010, J. Comput. Phys..

[24]  Benjamin Seibold,et al.  Jet schemes for advection problems , 2011, 1101.5374.

[25]  C. W. Hirt,et al.  An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds , 1997 .

[26]  Andrew J. Majda,et al.  High order accurate vortex methods with explicit velocity kernels , 1985 .

[27]  P. Swarztrauber,et al.  A standard test set for numerical approximations to the shallow water equations in spherical geometry , 1992 .

[28]  S. Reich,et al.  The remapped particle‐mesh semi‐Lagrangian advection scheme , 2006, physics/0607243.

[29]  L. Schumaker,et al.  Fitting scattered data on spherelike surfaces using tensor products of trigonometric and polynomial splines , 1991 .

[30]  Oliver Wild,et al.  Global tropospheric ozone modeling: Quantifying errors due to grid resolution , 2006 .

[31]  Jean-Christophe Nave,et al.  The Characteristic Mapping Method for the Linear Advection of Arbitrary Sets , 2013, SIAM J. Sci. Comput..

[32]  P. Swarztrauber On the Spectral Approximation of Discrete Scalar and Vector Functions on the Sphere , 1979 .

[33]  P. H. Lauritzena,et al.  Evaluating advection / transport schemes using interrelated tracers , scatter plots and numerical mixing diagnostics , 2011 .

[34]  Ramachandran D. Nair,et al.  The Mass-Conservative Cell-Integrated Semi-Lagrangian Advection Scheme on the Sphere , 2002 .

[35]  Shian‐Jiann Lin,et al.  Multidimensional Flux-Form Semi-Lagrangian Transport Schemes , 1996 .

[36]  H. O. Nordmark,et al.  Rezoning for higher order vortex methods , 1991 .

[37]  Paul Dierckx,et al.  Algorithms for smoothing data on the sphere with tensor product splines , 1984, Computing.

[38]  Paul A. Ullrich,et al.  A conservative semi-Lagrangian multi-tracer transport scheme (CSLAM) on the cubed-sphere grid , 2010, J. Comput. Phys..

[39]  Jean-Francois Lamarque,et al.  Simulated lower stratospheric trends between 1970 and 2005: Identifying the role of climate and composition changes , 2008 .

[40]  Peter H. Lauritzen,et al.  A class of deformational flow test cases for linear transport problems on the sphere , 2010, J. Comput. Phys..

[41]  ShuChi-Wang,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes, II , 1989 .

[42]  Peter H. Lauritzen,et al.  A flux-form version of the conservative semi-Lagrangian multi-tracer transport scheme (CSLAM) on the cubed sphere grid , 2011, J. Comput. Phys..

[43]  Jean-Christophe Nave,et al.  A Characteristic Mapping Method for the two-dimensional incompressible Euler equations , 2021, J. Comput. Phys..

[44]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[45]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[46]  S. Zalesak Fully multidimensional flux-corrected transport algorithms for fluids , 1979 .

[47]  Michael Bergdorf,et al.  Multilevel Adaptive Particle Methods for Convection-Diffusion Equations , 2005, Multiscale Model. Simul..

[48]  Lei Wang,et al.  A Lagrangian particle/panel method for the barotropic vorticity equations on a rotating sphere , 2014 .

[49]  John Thuburn,et al.  Numerical advection schemes, cross‐isentropic random walks, and correlations between chemical species , 1997 .

[50]  Michael Bergdorf,et al.  A Lagrangian Particle-Wavelet Method , 2006, Multiscale Model. Simul..