Pragmatic Design Methods Using Adaptive Controller Structures for Mechatronic Applications with Variable Parameters and Working Conditions

This chapter treats two pragmatic design methods for controllers dedicated to mechatronic applications working under variable conditions; for such applications adaptive structures of the control algorithms are of great interest. Basically, the design is based on two extensions of the modulus optimum method and of the symmetrical optimum method (SO-m): the Extended SO-m and the double parameterization of the SO-m (2p-SO-m). Both methods are introduced by the authors and they use PI(D) controllers that can ensure high control performance: increased value of the phase margins, improved tracking performance, and efficient disturbance rejection. A short and systematic presentation of the methods and digital implementation aspects using an adaptive structure of the algorithms for industrial applications are given. The application deals with a cascade speed control structure for a driving system with continuously variable parameters, i.e., electrical drives with variable reference input, variable moment of inertia and variable disturbance input.

[1]  Ned Mohan Advanced electric drives , 2014 .

[2]  Claudia-Adina Dragos,et al.  Choosing a Proper Control Structure for a Mechatronic System with Variable Parameters , 2013 .

[3]  Stanko Strmčnik,et al.  A new PID controller tuning method based on multiple integrations , 1999 .

[4]  Stefan Preitl,et al.  Cross-Optimization Aspects Concerning the Extended Symmetrical Optimum Method , 2000 .

[5]  Hisao Ishibuchi,et al.  A weighted fuzzy classifier and its application to image processing tasks , 2007, Fuzzy Sets Syst..

[6]  Noor Akhmad Setiawan,et al.  3D Dynamic UAV Path Planning for Interception of Moving Target in Cluttered Environment , 2013 .

[7]  Yeung Yam,et al.  From differential equations to PDC controller design via numerical transformation , 2003, Comput. Ind..

[8]  Georgi M. Dimirovski,et al.  Quadratic stability of a class of switched nonlinear systems , 2004, IEEE Trans. Autom. Control..

[9]  Ilona Pabst AN APPROACH FOR RELIABILITY ESTIMATION AND CONTROL OF MECHATRONIC SYSTEMS , 2006 .

[10]  Rolf Isermann,et al.  Mechatronic Systems: Fundamentals , 2003 .

[11]  Youqing Wang,et al.  Robust stability analysis for an enhanced ILC-based PI controller , 2013 .

[12]  Stanko Strmcnik,et al.  A magnitude optimum multiple integration tuning method for filtered PID controller , 2001, Autom..

[13]  K. G. Papadopoulos,et al.  On the automatic tuning of PID type controllers via the Magnitude Optimum criterion , 2012, 2012 IEEE International Conference on Industrial Technology.

[14]  Klaus Zeman,et al.  CONCEPTUAL DESIGN OF MECHATRONIC SYSTEMS AS A RECURRING ELEMENT OF INNOVATION PROCESSES , 2006 .

[15]  G. Hearns,et al.  Advanced Control for Hot Rolling Mills , 1999 .

[16]  Yuxin Su,et al.  Smooth reference trajectory generation for industrial mechatronic systems under torque saturation , 2006 .

[17]  K. Papadopoulos,et al.  Extending the Symmetrical Optimum criterion to the design of PID type-p control loops , 2012 .

[18]  Kevin Kok Wai Wong,et al.  Fuzzy Rule Interpolation and Extrapolation Techniques: Criteria and Evaluation Guidelines , 2011, J. Adv. Comput. Intell. Intell. Informatics.

[19]  Stefan Preitl,et al.  LOW COST FUZZY CONTROLLERS FOR CLASSES OF SECOND-ORDER SYSTEMS , 2002 .

[20]  J. Vaščák,et al.  Approaches in adaptation of fuzzy cognitive maps for navigation purposes , 2010, 2010 IEEE 8th International Symposium on Applied Machine Intelligence and Informatics (SAMI).

[21]  Luc Loron,et al.  Tuning of PID controllers by the non-symmetrical optimum method , 1997, Autom..

[22]  Igor Skrjanc,et al.  Direct fuzzy model‐reference adaptive control , 2002, Int. J. Intell. Syst..

[23]  V. Zoppig,et al.  Project course "Design of Mechatronic Systems" (ICM 2006) , 2006, 2006 IEEE International Conference on Mechatronics.

[24]  S. Preitl,et al.  Development of some fuzzy controllers with non-homogenous dynamics with respect to the input channels meant for a class of systems , 1999, 1999 European Control Conference (ECC).

[25]  Georgi M. Dimirovski,et al.  Integral Sliding Mode Control for a Class of Uncertain Switched Nonlinear Systems , 2010, Eur. J. Control.

[26]  Karl Johan Åström,et al.  PID Controllers: Theory, Design, and Tuning , 1995 .

[27]  Stefan Baldursson,et al.  BLDC Motor Modelling and Control - A Matlab®/Simulink® Implementation , 2005 .

[28]  Plamen P. Angelov,et al.  A new type of simplified fuzzy rule-based system , 2012, Int. J. Gen. Syst..

[29]  Radu-Emil Precup,et al.  A survey on industrial applications of fuzzy control , 2011, Comput. Ind..

[30]  Saša S. Nikolić,et al.  Modelling of dynamical systems based on almost orthogonal polynomials , 2010 .

[31]  Stefan Preitl,et al.  An extension of tuning relations after symmetrical optimum method for PI and PID controllers , 1999, Autom..

[32]  Stanko Strmcnik,et al.  Improving disturbance rejection of PI controllers by means of the magnitude optimum method. , 2004, ISA transactions.

[33]  Nikolaos I. Margaris,et al.  Optimal tuning of PID controllers for integrating processes via the symmetrical optimum criterion , 2011, 2011 19th Mediterranean Conference on Control & Automation (MED).