Sphere packings revisited
暂无分享,去创建一个
[1] Károly Bezdek,et al. On the Maximum Number of Touching Pairs in a Finite Packing of Translates of a Convex Body , 2002, J. Comb. Theory, Ser. A.
[2] K. Ball. A lower bound for the optimal density of lattice packings , 1992 .
[3] Thomas C. Hales. Sphere Packings, II , 1997, Discret. Comput. Geom..
[4] Circle packings into convex domains of the Euclidean and hyperbolic plane and the sphere , 1986 .
[5] Károly Bezdek,et al. Finding the Best Face on a Voronoi Polyhedron – The Strong Dodecahedral Conjecture Revisited , 2005 .
[6] Douglas J. Muder,et al. Putting the best face on a Voronoi polyhedron , 1988 .
[7] C. A. Rogers,et al. Packing and Covering , 1964 .
[8] H. Hadwiger,et al. Über Treffanzahlen bei translationsgleichen Eikörpern , 1957 .
[9] Robert Connelly,et al. Finite and Uniform Stability of Sphere Packings , 1998, Discret. Comput. Geom..
[10] L. Danzer,et al. Über zwei Probleme bezüglich konvexer Körper von P. Erdös und von V. L. Klee , 1962 .
[11] W. Hsiang. ON THE SPHERE PACKING PROBLEM AND THE PROOF OF KEPLER'S CONJECTURE , 1993 .
[12] L. Bowen. Circle packing in the hyperbolic plane. , 2000 .
[13] D. Weaire,et al. A counter-example to Kelvin's conjecture on minimal surfaces , 1994 .
[14] O. Musin. The kissing number in four dimensions , 2003, math/0309430.
[15] Ulrich Betke,et al. Sausages are good packings , 1995, Discret. Comput. Geom..
[16] Beniamino Segre,et al. On the Densest Packing of Circles , 1944 .
[17] C. Petty,et al. Equilateral sets in Minkowski spaces , 1971 .
[18] Peter Braß,et al. Erds Distance Problems in Normed Spaces , 1996, Comput. Geom..
[19] K. Böröczky. Über die Newtonsche Zahl regulärer Vielecke , 1971 .
[20] W. Fischer,et al. Sphere Packings, Lattices and Groups , 1990 .
[21] Thomas C. Hales,et al. A Proof of the Dodecahedral Conjecture , 1998, math/9811079.
[22] Charles Radin,et al. Densest Packing of Equal Spheres in Hyperbolic Space , 2002, Discret. Comput. Geom..
[23] K. Bezdek,et al. On k+-neighbour Packings and One-sided Hadwiger Configurations , 2003 .
[24] B. L. Waerden,et al. Das Problem der dreizehn Kugeln , 1952 .
[25] Eiichi Bannai,et al. Uniqueness of Certain Spherical Codes , 1981, Canadian Journal of Mathematics.
[26] I. Talata,et al. The Translative Kissing Number of Tetrahedra Is 18 , 1999, Discret. Comput. Geom..
[27] A. Wyner. Capabilities of bounded discrepancy decoding , 1965 .
[28] Kurt M. Anstreicher. The Thirteen Spheres: A New Proof , 2004, Discret. Comput. Geom..
[29] N. J. A. Sloane,et al. On Kissing Numbers in Dimensions 32 to 128 , 1998, Electron. J. Comb..
[30] A stability property of the densest circle packing , 1988 .
[31] David G. Larman,et al. On the Kissing Numbers of Some Special Convex Bodies , 1999, Discret. Comput. Geom..
[32] L. Lovász,et al. Remarks on a theorem of Redei , 1981 .
[33] Thomas C. Hales,et al. An overview of the Kepler conjecture , 1998 .
[34] D. Hilbert. Mathematical Problems , 2019, Mathematics: People · Problems · Results.
[35] M. Henk,et al. Finite and infinite packings. , 1994 .
[36] J. H. Lindsey,et al. Sphere packing in R 3 , 1986 .
[37] W. Hsiang. Least Action Principle of Crystal Formation of Dense Packing Type and Kepler's Conjecture , 2002 .
[38] John Leech,et al. The Problem of the Thirteen Spheres , 1956, The Mathematical Gazette.
[39] Peter Braß. On equilateral simplices in normed spaces , 1997 .
[40] Ludwig Danzer,et al. Finite point-sets on S2 with minimum distance as large as possible , 1986, Discret. Math..
[41] Florian Pfender,et al. Kissing numbers, sphere packings, and some unexpected proofs , 2004 .
[42] K. Böröczky. Packing of spheres in spaces of constant curvature , 1978 .
[43] Douglas J. Muder,et al. A new bound on the local density of sphere packings , 1993, Discret. Comput. Geom..
[44] J. Linhart. Die Newtonsche Zahl von regelmässigen Fünfecken , 1973 .
[45] Henry Cohn,et al. New upper bounds on sphere packings I , 2001, math/0110009.
[46] T. Hales. The Kepler conjecture , 1998, math/9811078.
[47] C. A. Rogers. The Packing of Equal Spheres , 1958 .
[48] O. Musin. The problem of the twenty-five spheres , 2003 .
[49] L. Fejes. Über die dichteste Kugellagerung , 1942 .
[50] István Talata,et al. Exponential Lower Bound for the Translative Kissing Numbers of d -Dimensional Convex Bodies , 1998, Discret. Comput. Geom..
[51] Samuel P. Ferguson. Sphere packings V , 1998 .
[52] Ulrich Betke,et al. Finite Packings of Spheres , 1998, Discret. Comput. Geom..
[53] K. Böröczky. The Newton-Gregory Problem Revisited , 2003 .
[54] H. P. F. Swinnerton-Dyer,et al. Extremal lattices of convex bodies , 1953, Mathematical Proceedings of the Cambridge Philosophical Society.
[55] Karoly Bezdek. On a stronger form of Roger's lemma and the minimum surface area of Voronoi cells in unit ball packings , 2000 .
[56] N. J. A. Sloane,et al. New Bounds on the Number of Unit Spheres That Can Touch a Unit Sphere in n Dimensions , 1979, J. Comb. Theory, Ser. A.
[57] Karoly Bezdek. Improving Rogers’ Upper Bound for the Density of Unit Ball Packings via Estimating the Surface Area of Voronoi Cells from Below in Euclidean \sl d -Space for All \sl d ≥ \bf 8 , 2002, Discret. Comput. Geom..
[58] Thomas C. Hales. Sphere packings, I , 1997, Discret. Comput. Geom..