Visual saliency detection with center shift

This paper proposes a novel method for visual saliency detection based on an universal probabilistic model, which measures the saliency by combining low level features and location prior. We view the task of estimating visual saliency as searching the most conspicuous parts in an image and extract the saliency map by computing the dissimilarity between different regions. We simulate the moving of the center of human visual field, and describe how the center shift process works on visual saliency. Furthermore, multiscale analysis is adopted for improving the robustness of our model. Experimental results on three public image datasets show that the proposed approach outperforms 18 state-of-the-art methods for both salient object detection and human eye fixation prediction.

[1]  Christof Koch,et al.  Learning a saliency map using fixated locations in natural scenes. , 2011, Journal of vision.

[2]  Zhi Liu,et al.  Saliency detection using multiple region-based features , 2011 .

[3]  Pietro Perona,et al.  Graph-Based Visual Saliency , 2006, NIPS.

[4]  Gaurav Bhatnagar,et al.  An Image Fusion Framework Based on Human Visual System in Framelet Domain , 2012, Int. J. Wavelets Multiresolution Inf. Process..

[5]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .

[6]  Martin D. Levine,et al.  Saliency Detection Based on Frequency and Spatial Domain Analyses , 2011, BMVC.

[7]  Nanning Zheng,et al.  Learning to Detect a Salient Object , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Ingrid Heynderickx,et al.  Visual Attention in Objective Image Quality Assessment: Based on Eye-Tracking Data , 2011, IEEE Transactions on Circuits and Systems for Video Technology.

[9]  Sabine Süsstrunk,et al.  Frequency-tuned salient region detection , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[10]  Nuno Vasconcelos,et al.  Spatiotemporal Saliency in Dynamic Scenes , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Esa Rahtu,et al.  Segmenting Salient Objects from Images and Videos , 2010, ECCV.

[12]  Shi-Min Hu,et al.  Global contrast based salient region detection , 2011, CVPR 2011.

[13]  Mubarak Shah,et al.  Visual attention detection in video sequences using spatiotemporal cues , 2006, MM '06.

[14]  Frédo Durand,et al.  Learning to predict where humans look , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[15]  Wen Gao,et al.  Multi-Task Rank Learning for Visual Saliency Estimation , 2011, IEEE Transactions on Circuits and Systems for Video Technology.

[16]  Baoxin Li,et al.  A two-stage approach to saliency detection in images , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[17]  S Ullman,et al.  Shifts in selective visual attention: towards the underlying neural circuitry. , 1985, Human neurobiology.

[18]  Yu Fu,et al.  Visual saliency detection by spatially weighted dissimilarity , 2011, CVPR 2011.

[19]  Wen Gao,et al.  Measuring visual saliency by Site Entropy Rate , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[20]  Peyman Milanfar,et al.  Static and space-time visual saliency detection by self-resemblance. , 2009, Journal of vision.

[21]  Christof Koch,et al.  Image Signature: Highlighting Sparse Salient Regions , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  John K. Tsotsos Analyzing vision at the complexity level , 1990, Behavioral and Brain Sciences.

[23]  Sabine Süsstrunk,et al.  Saliency detection using maximum symmetric surround , 2010, 2010 IEEE International Conference on Image Processing.

[24]  Liqing Zhang,et al.  Saliency Detection: A Spectral Residual Approach , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[25]  Nuno Vasconcelos,et al.  Discriminant Saliency, the Detection of Suspicious Coincidences, and Applications to Visual Recognition , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Michael Lindenbaum,et al.  Esaliency (Extended Saliency): Meaningful Attention Using Stochastic Image Modeling , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Antonio Torralba,et al.  LabelMe: A Database and Web-Based Tool for Image Annotation , 2008, International Journal of Computer Vision.

[28]  Nicu Sebe,et al.  Image saliency by isocentric curvedness and color , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[29]  智一 吉田,et al.  Efficient Graph-Based Image Segmentationを用いた圃場図自動作成手法の検討 , 2014 .

[30]  Gary R. Bradski,et al.  ORB: An efficient alternative to SIFT or SURF , 2011, 2011 International Conference on Computer Vision.

[31]  Bin Fang,et al.  A Computational Model for Saliency Maps by Using Local Entropy , 2010, AAAI.

[32]  N. Vasconcelos,et al.  Biologically plausible saliency mechanisms improve feedforward object recognition , 2010, Vision Research.

[33]  Mark Goadrich,et al.  The relationship between Precision-Recall and ROC curves , 2006, ICML.

[34]  Bärbel Mertsching,et al.  Fast and Robust Generation of Feature Maps for Region-Based Visual Attention , 2008, IEEE Transactions on Image Processing.

[35]  John K. Tsotsos,et al.  Saliency Based on Information Maximization , 2005, NIPS.

[36]  Ying Yu,et al.  An approach for visual attention based on biquaternion and its application for ship detection in multispectral imagery , 2012, Neurocomputing.

[37]  Qing Wang,et al.  Saliency selection for robust visual tracking , 2010, 2010 IEEE International Conference on Image Processing.

[38]  Vladimir Zlokolica,et al.  Salient Motion Features for Video Quality Assessment , 2011, IEEE Transactions on Image Processing.

[39]  Paul L. Rosin A simple method for detecting salient regions , 2009, Pattern Recognit..

[40]  Xuelong Li,et al.  Multi-spectral saliency detection , 2013, Pattern Recognit. Lett..

[41]  Liqing Zhang,et al.  Dynamic visual attention: searching for coding length increments , 2008, NIPS.

[42]  Alexander Toet,et al.  Computational versus Psychophysical Bottom-Up Image Saliency: A Comparative Evaluation Study , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[43]  Tim K Marks,et al.  SUN: A Bayesian framework for saliency using natural statistics. , 2008, Journal of vision.

[44]  Hantao Liu,et al.  Visual Attention in Objective Image Quality Assessment , 2011 .

[45]  Lijuan Duan,et al.  Visual Conspicuity Index: Spatial Dissimilarity, Distance, and Central Bias , 2011, IEEE Signal Processing Letters.

[46]  Tom Fawcett,et al.  An introduction to ROC analysis , 2006, Pattern Recognit. Lett..

[47]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.

[48]  Yael Pritch,et al.  Saliency filters: Contrast based filtering for salient region detection , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[49]  Lihi Zelnik-Manor,et al.  Context-aware saliency detection , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[50]  Benjamin W Tatler,et al.  The central fixation bias in scene viewing: selecting an optimal viewing position independently of motor biases and image feature distributions. , 2007, Journal of vision.

[51]  Shang-Hong Lai,et al.  From co-saliency to co-segmentation: An efficient and fully unsupervised energy minimization model , 2011, CVPR 2011.

[52]  King Ngi Ngan,et al.  Global salient information maximization for saliency detection , 2012, Signal Process. Image Commun..

[53]  Naila Murray,et al.  Saliency estimation using a non-parametric low-level vision model , 2011, CVPR 2011.

[54]  Nuno Vasconcelos,et al.  Bottom-up saliency is a discriminant process , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[55]  Christof Koch,et al.  Modeling attention to salient proto-objects , 2006, Neural Networks.

[56]  Laurent Itti,et al.  Visual attention guided bit allocation in video compression , 2011, Image Vis. Comput..

[57]  Thomas Deselaers,et al.  What is an object? , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.