Binary MDS Array Codes with Asymptotically Optimal Repair for All Columns

An m x (k+r) binary maximum distance separable (MDS) array code contains k information columns and r parity columns with each entry being a bit such that any k out of k+r columns can retrieve the k information columns. When there is a failed column, it is critical to minimize the repair bandwidth that is the total number of bits downloaded from d out of k+r-1 surviving columns in repairing the failed column. In this paper, we first propose a new construction of binary MDS array codes with any number of parity columns (i.e., r>= 2) that have asymptotically optimal repair bandwidth for any information column, where d=k+r-1. By applying a transformation for the proposed binary MDS array codes, we then can obtain the transformed binary MDS array codes that also have optimal repair bandwidth for any parity column.

[1]  Nihar B. Shah,et al.  Optimal Exact-Regenerating Codes for Distributed Storage at the MSR and MBR Points via a Product-Matrix Construction , 2010, IEEE Transactions on Information Theory.

[2]  Arman Fazeli,et al.  Minimum Storage Regenerating Codes for All Parameters , 2017, IEEE Transactions on Information Theory.

[3]  王新,et al.  MDR Codes: A New Class of RAID-6 Codes with Optimal Rebuilding and Encoding , 2014 .

[4]  Jehoshua Bruck,et al.  EVENODD: An Efficient Scheme for Tolerating Double Disk Failures in RAID Architectures , 1995, IEEE Trans. Computers.

[5]  Jehoshua Bruck,et al.  X-Code: MDS Array Codes with Optimal Encoding , 1999, IEEE Trans. Inf. Theory.

[6]  Chao Tian,et al.  Fast Erasure Coding for Data Storage: A Comprehensive Study of the Acceleration Techniques , 2019, FAST.

[7]  Jie Li,et al.  A Generic Transformation to Enable Optimal Repair in MDS Codes for Distributed Storage Systems , 2016, IEEE Transactions on Information Theory.

[8]  Hanxu Hou,et al.  Binary MDS Array Codes With Optimal Repair , 2018, IEEE Transactions on Information Theory.

[9]  Alexandros G. Dimakis,et al.  Network Coding for Distributed Storage Systems , 2007, IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications.

[10]  Kannan Ramchandran,et al.  A Piggybacking Design Framework for Read-and Download-Efficient Distributed Storage Codes , 2017, IEEE Transactions on Information Theory.

[11]  Hui Li,et al.  A New Design of Binary MDS Array Codes With Asymptotically Weak-Optimal Repair , 2019, IEEE Transactions on Information Theory.

[12]  Cheng Huang,et al.  STAR : An Efficient Coding Scheme for Correcting Triple Storage Node Failures , 2005, IEEE Transactions on Computers.

[13]  Yunghsiang Sam Han,et al.  Triple-fault-tolerant binary MDS array codes with asymptotically optimal repair , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[14]  Minghua Chen,et al.  BASIC Codes: Low-Complexity Regenerating Codes for Distributed Storage Systems , 2016, IEEE Transactions on Information Theory.

[15]  Minghua Chen,et al.  Regenerating codes over a binary cyclic code , 2014, 2014 IEEE International Symposium on Information Theory.

[16]  Jie Li,et al.  A Framework of Constructions of Minimal Storage Regenerating Codes With the Optimal Access/Update Property , 2013, IEEE Transactions on Information Theory.

[17]  Yunghsiang Sam Han,et al.  A class of binary MDS array codes with asymptotically weak-optimal repair , 2018, Science China Information Sciences.

[18]  Jie Li,et al.  A Note on the Transformation to Enable Optimal Repair in MDS Codes for Distributed Storage Systems , 2019, ArXiv.

[19]  Xin Wang,et al.  Two New Classes of Two-Parity MDS Array Codes With Optimal Repair , 2016, IEEE Communications Letters.

[20]  Van-Anh Truong,et al.  Availability in Globally Distributed Storage Systems , 2010, OSDI.

[21]  Alexander Barg,et al.  Explicit Constructions of High-Rate MDS Array Codes With Optimal Repair Bandwidth , 2016, IEEE Transactions on Information Theory.

[22]  Mario Blaum A Family of MDS Array Codes with Minimal Number of Encoding Operations , 2006, 2006 IEEE International Symposium on Information Theory.

[23]  Peter F. Corbett,et al.  Row-Diagonal Parity for Double Disk Failure Correction (Awarded Best Paper!) , 2004, USENIX Conference on File and Storage Technologies.

[24]  Minghua Chen,et al.  BASIC regenerating code: Binary addition and shift for exact repair , 2013, 2013 IEEE International Symposium on Information Theory.

[25]  Robert Mateescu,et al.  Opening the Chrysalis: On the Real Repair Performance of MSR Codes , 2016, FAST.

[26]  Jehoshua Bruck,et al.  Zigzag Codes: MDS Array Codes With Optimal Rebuilding , 2011, IEEE Transactions on Information Theory.