Harvesting light with transformation optics

Transformation optics (TO) is a new tool for controlling electromagnetic fields. In the context of metamaterial technology, it provides a direct link between a desired electromagnetic (EM) phenomenon and the material response required for its occurrence. Recently, this powerful framework has been successfully exploited to study surface plasmon assisted phenomena such as light harvesting. Here, we review the general strategy based on TO to design plasmonic devices capable of harvesting light over a broadband spectrum and achieving considerable field confinement and enhancement. The methodology starts with two-dimensional (2D) cases, such as 2D metal edges, crescent-shaped cylinders, nanowire dimers, and rough metal surfaces, and is well extended to fully-fledged three-dimensional (3D) situations. The largely analytic approach gives physical insights into the processes involved and suggests a way forward to study a wide variety of plasmonic nanostructures.

[1]  M. Stockman,et al.  Nanofocusing of optical energy in tapered plasmonic waveguides. , 2004, Physical review letters.

[2]  Yu Luo,et al.  Cloak for multilayered and gradually changing media , 2008 .

[3]  Yu Luo,et al.  DIRECTIVE EMISSION OBTAINED BY COORDINATE TRANSFORMATION , 2007, 0712.2755.

[4]  Luis Martín-Moreno,et al.  Nanofocusing with channel plasmon polaritons. , 2009, Nano letters.

[5]  T. Cui,et al.  Three-dimensional broadband and broad-angle transformation-optics lens. , 2010, Nature communications.

[6]  Luke P. Lee,et al.  Optical properties of the crescent-shaped nanohole antenna. , 2009, Nano letters.

[7]  J. Pendry,et al.  Hiding under the carpet: a new strategy for cloaking. , 2008, Physical review letters.

[8]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[9]  J. Baumberg,et al.  Dressing plasmons in particle-in-cavity architectures , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[10]  Yu Luo,et al.  Transformation-optics description of plasmonic nanostructures containing blunt edges/corners: from symmetric to asymmetric edge rounding. , 2012, ACS nano.

[11]  David R. Smith,et al.  Probing dynamically tunable localized surface plasmon resonances of film-coupled nanoparticles by evanescent wave excitation. , 2012, Nano letters.

[12]  Jinghua Teng,et al.  Broadband Terahertz Plasmonic Response of Touching InSb Disks , 2012, Advanced materials.

[13]  P. Sheng,et al.  Transformation optics and metamaterials. , 2010, Nature materials.

[14]  Rostislav Bukasov,et al.  Highly tunable infrared extinction properties of gold nanocrescents. , 2007, Nano letters.

[15]  Hongsheng Chen,et al.  Manipulating the directivity of antennas with metamaterial. , 2008, Optics express.

[16]  J. Kottmann,et al.  Plasmon resonant coupling in metallic nanowires. , 2001, Optics express.

[17]  Yung Doug Suh,et al.  Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. , 2010, Nature materials.

[18]  Yu Luo,et al.  Minimizing the scattering of a nonmagnetic cloak , 2010, 1002.2092.

[19]  Peter Nordlander,et al.  Plasmon hybridization in nanorod dimers , 2008 .

[20]  Alexandre Aubry,et al.  Surface plasmons and singularities. , 2010, Nano letters.

[21]  R. T. Hill,et al.  Probing the Ultimate Limits of Plasmonic Enhancement , 2012, Science.

[22]  Xiang Zhang,et al.  Plasmon lasers at deep subwavelength scale , 2009, Nature.

[23]  David R. Smith,et al.  Electromagnetic Design With Transformation Optics Transformation optics is introduced and reviewed in this article as a powerful technique for designing metamagnetic materials; several novel electromagnetic examples are given and discussed. , 2011 .

[24]  William L. Barnes,et al.  Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons , 2008 .

[25]  T. Cui,et al.  Three-dimensional broadband ground-plane cloak made of metamaterials , 2010, Nature communications.

[26]  V. Shalaev,et al.  Demonstration of a spaser-based nanolaser , 2009, Nature.

[27]  D. R. Smith,et al.  Transformation Optics and Subwavelength Control of Light , 2012, Science.

[28]  David R. Smith,et al.  Leveraging nanoscale plasmonic modes to achieve reproducible enhancement of light. , 2010, Nano letters.

[29]  Yu Luo,et al.  Full-wave analysis of prolate spheroidal and hyperboloidal cloaks , 2008 .

[30]  Xiang Zhang,et al.  Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. , 2010, Nature materials.

[31]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[32]  J. Pendry,et al.  Plasmonic light-harvesting devices over the whole visible spectrum. , 2010, Nano letters.

[33]  David R. Smith,et al.  Broadband Ground-Plane Cloak , 2009, Science.

[34]  Yu Luo,et al.  Sensitivity of Transformation Cloak in Engineering , 2008 .

[35]  Stefan A. Maier,et al.  Broadband plasmonic device concentrating the energy at the nanoscale: The crescent-shaped cylinder , 2010 .

[36]  Jennifer S. Shumaker-Parry,et al.  Fabrication of Crescent‐Shaped Optical Antennas , 2005 .

[37]  Gennady Shvets,et al.  Plasmonic nanolaser using epitaxially grown silver film , 2012, CLEO 2012.

[38]  Martijn Wubs,et al.  Surface plasmon wave adapter designed with transformation optics. , 2011, ACS nano.

[39]  G. Bartal,et al.  An optical cloak made of dielectrics. , 2009, Nature materials.

[40]  Ming C. Wu,et al.  Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper , 2012, Nature Photonics.

[41]  Miguel Navarro-Cia,et al.  Broad-band near-infrared plasmonic nanoantennas for higher harmonic generation. , 2012, ACS nano.

[42]  Xiang Zhang,et al.  Compressing surface plasmons for nano-scale optical focusing. , 2009, Optics express.

[43]  J. Pendry,et al.  Transformation-optics description of nonlocal effects in plasmonic nanostructures. , 2012, Physical review letters.

[44]  Yu Luo,et al.  Homogeneous optical cloak constructed with uniform layered structures. , 2011, Optics express.

[45]  Xu,et al.  Electromagnetic contributions to single-molecule sensitivity in surface-enhanced raman scattering , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[46]  David R. Smith,et al.  A full-parameter unidirectional metamaterial cloak for microwaves. , 2013, Nature materials.

[47]  Alexandre Aubry,et al.  Electromagnetic contribution to surface-enhanced Raman scattering from rough metal surfaces: A transformation optics approach , 2011 .

[48]  P. Nordlander,et al.  Plasmons in strongly coupled metallic nanostructures. , 2011, Chemical reviews.

[49]  G. Wurtz,et al.  Plasmonic nanorod metamaterials for biosensing. , 2009, Nature materials.

[50]  Yu Luo,et al.  Transmission of electromagnetic waves through sub-wavelength channels. , 2010, Optics express.

[51]  Yu Luo,et al.  Cloak of arbitrary shape , 2008 .

[52]  Bae-Ian Wu,et al.  Interaction of an electromagnetic wave with a cone-shaped invisibility cloak and polarization rotator , 2008 .

[53]  Aeneas Wiener,et al.  Theory of three-dimensional nanocrescent light harvesters. , 2012, Nano letters.

[54]  A. Ward,et al.  Refraction and geometry in Maxwell's equations , 1996 .

[55]  Dang Yuan Lei,et al.  Broadband light harvesting nanostructures robust to edge bluntness. , 2012, Physical review letters.

[56]  X. Zhang,et al.  Recent advances in transformation optics. , 2012, Nanoscale.

[57]  Ross C. McPhedran,et al.  Transport properties of touching cylinder pairs and of the square array of touching cylinders , 1987, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[58]  Arto V. Nurmikko,et al.  Strongly Interacting Plasmon Nanoparticle Pairs: From Dipole−Dipole Interaction to Conductively Coupled Regime , 2004 .

[59]  David R. Smith,et al.  Extreme-angle broadband metamaterial lens. , 2010, Nature materials.

[60]  J. Pendry,et al.  Collective Theory for Surface Enhanced Raman Scattering. , 1996, Physical review letters.

[61]  Emil Prodan,et al.  Plasmon Hybridization in Nanoparticles near Metallic Surfaces , 2004 .

[62]  Dang Yuan Lei,et al.  Plasmonic hybridization between nanowires and a metallic surface: a transformation optics approach. , 2011, ACS nano.

[63]  Naomi J Halas,et al.  Three-dimensional nanostructures as highly efficient generators of second harmonic light. , 2011, Nano letters.

[64]  W. H. Wee,et al.  Super phase array , 2010 .

[65]  Yannick Sonnefraud,et al.  Controlling light localization and light-matter interactions with nanoplasmonics. , 2010, Small.

[66]  Stefan A. Maier,et al.  Conformal transformation applied to plasmonics beyond the quasistatic limit , 2010 .

[67]  Dang Yuan Lei,et al.  Interaction between plasmonic nanoparticles revisited with transformation optics. , 2010, Physical review letters.

[68]  M. Kreiter,et al.  Tuning resonances on crescent-shaped noble-metal nanoparticles , 2007 .

[69]  Hiding levitating objects above a ground plane , 2010, 1005.3316.

[70]  Javier Aizpurua,et al.  Close encounters between two nanoshells. , 2008, Nano letters.

[71]  J. Pendry,et al.  Three-Dimensional Invisibility Cloak at Optical Wavelengths , 2010, Science.

[72]  Bae-Ian Wu,et al.  Cylindrical cloak with axial permittivity/permeability spatially invariant , 2008 .

[73]  Harry A. Atwater,et al.  Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles , 2005 .

[74]  Yu Luo,et al.  Macroscopic invisibility cloaking of visible light , 2010, Nature communications.

[75]  Wave and ray analysis of a type of cloak exhibiting magnified and shifted scattering effect , 2009, 0904.1463.

[76]  Alexandre G. Brolo,et al.  Plasmonics for future biosensors , 2012, Nature Photonics.

[77]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[78]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[79]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[80]  J. Pendry,et al.  Collection and concentration of light by touching spheres: a transformation optics approach. , 2010, Physical review letters.

[81]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[82]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[83]  T. Elsaesser,et al.  Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source. , 2007, Nano letters.

[84]  Masanobu Haraguchi,et al.  Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding , 2005 .

[85]  Peter Nordlander,et al.  Heterodimers: plasmonic properties of mismatched nanoparticle pairs. , 2010, ACS nano.

[86]  F. García-Vidal,et al.  Guiding and focusing of electromagnetic fields with wedge plasmon polaritons. , 2008, Physical review letters.

[87]  Lixin Ran,et al.  A Rigorous Analysis of Plane-Transformed Invisibility Cloaks , 2009, IEEE Transactions on Antennas and Propagation.

[88]  Yu Luo,et al.  Capturing photons with transformation optics , 2013, Nature Physics.

[89]  R. McPhedran,et al.  Electrostatic and optical resonances of cylinder pairs , 1981 .

[90]  S. Maier,et al.  Scattering efficiency and near field enhancement of active semiconductor plasmonic antennas at terahertz frequencies. , 2010, Optics express.

[91]  Jennifer A. Dionne,et al.  A Broadband Negative Index Metamaterial at Optical Frequencies , 2013 .

[92]  V. Kravets,et al.  Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection. , 2013, Nature materials.

[93]  Richard F. Haglund,et al.  Revealing plasmonic gap modes in particle-on-film systems using dark-field spectroscopy. , 2012, ACS nano.

[94]  Gennady Shvets,et al.  Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. , 2012, Nature materials.

[95]  Jeremy J. Baumberg,et al.  Revealing the quantum regime in tunnelling plasmonics , 2012, Nature.

[96]  Thomas R Huser,et al.  Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates. , 2005, Nano letters.

[97]  C. R.,et al.  Electrostatic and Optical Resonances of Cylinder Pairs , .

[98]  Stefan A. Maier,et al.  Transformation-optics insight into nonlocal effects in separated nanowires , 2012 .

[99]  Claire M. Cobley,et al.  Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. , 2011, Chemical reviews.

[100]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[101]  Yu Luo,et al.  High-directivity antenna with small antenna aperture , 2009 .

[102]  Jiangtao Huangfu,et al.  Guiding waves through an invisible tunnel. , 2009, Optics express.

[103]  Xiang Zhang,et al.  Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging , 2011, Nature.

[104]  Marco Lazzarino,et al.  Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons. , 2010, Nature Nanotechnology.

[105]  In-Yong Park,et al.  High-harmonic generation by resonant plasmon field enhancement , 2008, Nature.

[106]  Javier Aizpurua,et al.  Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. , 2006, Optics Express.

[107]  Yu Luo,et al.  Design and analytical full-wave validation of the invisibility cloaks, concentrators, and field rotators created with a general class of transformations , 2007, 0712.2027.

[108]  Yu Luo,et al.  New Concept Conformal Antennas Utilizing Metamaterial and Transformation Optics , 2008, IEEE Antennas and Wireless Propagation Letters.