GGLasso - a Python package for General Graphical Lasso computation
暂无分享,去创建一个
Fabian Schaipp | Oleg Vlasovets | Christian Müller | Fabian Schaipp | Oleg Vlasovets | Christian Müller
[1] Patrick Danaher,et al. The joint graphical lasso for inverse covariance estimation across multiple classes , 2011, Journal of the Royal Statistical Society. Series B, Statistical methodology.
[2] Richard Bonneau,et al. Disentangling microbial associations from hidden environmental and technical factors via latent graphical models , 2019, bioRxiv.
[3] R. Tibshirani,et al. Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.
[4] A. Willsky,et al. Latent variable graphical model selection via convex optimization , 2010, 1008.1290.
[5] Rina Foygel,et al. Extended Bayesian Information Criteria for Gaussian Graphical Models , 2010, NIPS.
[6] Federico Tomasi,et al. Latent Variable Time-varying Network Inference , 2018, KDD.
[7] Stephen P. Boyd,et al. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..
[8] Gaël Varoquaux,et al. Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..
[9] Stephen P. Boyd,et al. Network Inference via the Time-Varying Graphical Lasso , 2017, KDD.
[10] Kim-Chuan Toh,et al. An Efficient Linearly Convergent Regularized Proximal Point Algorithm for Fused Multiple Graphical Lasso Problems , 2021, SIAM J. Math. Data Sci..
[11] Shiqian Ma,et al. Alternating Direction Methods for Latent Variable Gaussian Graphical Model Selection , 2012, Neural Computation.
[12] M. Yuan,et al. Model selection and estimation in the Gaussian graphical model , 2007 .
[13] Alexandre d'Aspremont,et al. Model Selection Through Sparse Max Likelihood Estimation Model Selection Through Sparse Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data , 2022 .
[14] Kim-Chuan Toh,et al. A Proximal Point Dual Newton Algorithm for Solving Group Graphical Lasso Problems , 2019, SIAM J. Optim..
[15] J. Friedman,et al. New Insights and Faster Computations for the Graphical Lasso , 2011 .