ALADINS: An ALgebraic splitting time ADaptive solver for the Incompressible Navier-Stokes equations

We address a time-adaptive solver specifically devised for the incompressible Navier-Stokes (INS) equations. One of the challenging issues in this context is the identification of a reliable a posteriori error estimator. Typical strategies are based on the combination of the solutions computed either with two different time steps or two schemes with different accuracy. In this paper, we move from the pressure correction algebraic factorizations formerly proposed by Saleri, Veneziani (2005). These schemes feature an intrinsic hierarchical nature, such that an accurate solution for the pressure is obtained by computing intermediate low-order guesses. The difference between the two estimates provide a natural a posteriori estimator. After introducing the incremental formulation of the pressure correction schemes, we address the properties of this approach, including extensive implementation details. Numerical results presented refer to 2D and 3D unstructured problems, with a particular emphasis on cardiovascular problems, which are expected to largely benefit from time-adaptive solvers. In memory of F. Saleri (1965-2007).

[1]  P. Henrici Discrete Variable Methods in Ordinary Differential Equations , 1962 .

[2]  A. Quarteroni,et al.  Factorization methods for the numerical approximation of Navier-Stokes equations , 2000 .

[3]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[4]  D. Perić,et al.  A time-adaptive space-time finite element method for incompressible Lagrangian flows with free surfaces: computational issues , 2000 .

[5]  Howard C. Elman,et al.  Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics , 2014 .

[6]  A. Veneziani Block factorized preconditioners for high‐order accurate in time approximation of the Navier‐Stokes equations , 2003 .

[7]  Rolf Dieter Grigorieff,et al.  Time Discretisation of Parabolic Problems with the Variable 3-Step BDF , 2002 .

[8]  Pontus Matstoms,et al.  Parallel Sparse QR Factorization on Shared Memory Architectures , 1995, Parallel Comput..

[9]  Alfio Quarteroni,et al.  Analysis of the Yosida Method for the Incompressible Navier-Stokes Equations , 1999 .

[10]  O. C. Zienkiewicz,et al.  The Finite Element Method: Its Basis and Fundamentals , 2005 .

[11]  Barry Lee,et al.  Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..

[12]  A. Prohl Projection and quasi-compressibility methods for solving the incompressible navier-stokes equations , 1997 .

[13]  Timothy A. Davis,et al.  Multifrontral multithreaded rank-revealing sparse QR factorization , 2009, Combinatorial Scientific Computing.

[14]  高等学校計算数学学報編輯委員会編 高等学校計算数学学報 = Numerical mathematics , 1979 .

[15]  Jens Kristian Holmen,et al.  Algebraic splitting for incompressible Navier-Stokes equations , 2002 .

[16]  F. Saleri,et al.  A fast preconditioner for the incompressible Navier Stokes Equations , 2004 .

[17]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[18]  Paola Gervasio,et al.  Convergence Analysis of High Order Algebraic Fractional Step Schemes for Time-Dependent Stokes Equations , 2008, SIAM J. Numer. Anal..

[19]  Rolf Dieter Grigorieff,et al.  On the zero stability of the variable order variable stepsize BDF-Formulas , 1990 .

[20]  A. Aziz The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations , 1972 .

[21]  Robert A. van de Geijn,et al.  High-performance implementation of the level-3 BLAS , 2008, TOMS.

[22]  J. Womersley Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known , 1955, The Journal of physiology.

[23]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[24]  Paola Gervasio,et al.  Algebraic fractional-step schemes with spectral methods for the incompressible Navier-Stokes equations , 2006, J. Comput. Phys..

[25]  Jack Dongarra,et al.  LAPACK's user's guide , 1992 .

[26]  J. Szmelter Incompressible flow and the finite element method , 2001 .

[27]  David F. Griffiths,et al.  Adaptive Time-Stepping for Incompressible Flow Part II: Navier--Stokes Equations , 2010, SIAM J. Sci. Comput..

[28]  Jean E. Roberts,et al.  Higher Order Triangular Finite Elements with Mass Lumping for the Wave Equation , 2000, SIAM J. Numer. Anal..

[29]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[30]  David F. Griffiths,et al.  Adaptive Time-Stepping for Incompressible Flow Part I: Scalar Advection-Diffusion , 2008, SIAM J. Sci. Comput..

[31]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[32]  Jack J. Dongarra,et al.  Algorithm 679: A set of level 3 basic linear algebra subprograms: model implementation and test programs , 1990, TOMS.

[33]  Alessandro Veneziani A Note on the Consistency and Stability Properties of Yosida Fractional Step Schemes for the Unsteady Stokes Equations , 2009, SIAM J. Numer. Anal..

[34]  Jean-Luc Guermond,et al.  International Journal for Numerical Methods in Fluids on Stability and Convergence of Projection Methods Based on Pressure Poisson Equation , 2022 .

[35]  Alessandro Veneziani,et al.  Pressure Correction Algebraic Splitting Methods for the Incompressible Navier-Stokes Equations , 2005, SIAM J. Numer. Anal..

[36]  Jens Lang,et al.  Adaptive Two-Step Peer Methods for Incompressible Navier–Stokes Equations , 2010 .

[37]  David A. Steinman,et al.  An image-based modeling framework for patient-specific computational hemodynamics , 2008, Medical & Biological Engineering & Computing.