A comprehensive two‐moment warm microphysical bulk scheme. I: Description and tests

A bulk microphysical scheme which predicts the concentrations and mixing ratios of cloud droplets and raindrops is presented. The scheme draws its originality from the use of generalized gamma law as basis functions for the drop size distributions and also from the attention paid to performing analytical integrations of most of the microphysical transfer rates. The numerical representation of each process has been reviewed throughout and specific tests have been made to evaluate separately the accuracy of the scheme compared with a bin-size model. The scheme, which depends on the specification of a few input parameters shaping the activation spectrum, is incorporated in a three-dimensional non-hydrostatic model with some applications given in a companion paper (Part II).

[1]  N. Chaumerliac,et al.  Sulfur scavenging in a mesoscale model with quasi‐spectral microphysics: Two‐dimensional results for continental and maritime clouds , 1987 .

[2]  P. Wojtowicz,et al.  A Simple Model for Droplet Size Distribution in Atmospheric Clouds , 1982 .

[3]  T. Clark Use of Log-Normal Distributions for Numerical Calculations of Condensation and Collection , 1976 .

[4]  C. Ulbrich Natural Variations in the Analytical Form of the Raindrop Size Distribution , 1983 .

[5]  D. Lilly,et al.  Modeling of Stratocumulus Cloud Layers in a Large Eddy Simulation Model with Explicit Microphysics. , 1995 .

[6]  B. Stevens,et al.  Simulations of marine stratocumulus using a new microphysical parameterization scheme , 1998 .

[7]  N. Chaumerliac,et al.  Effects of Different Rain Parameterizations on the Simulation of Mesoscale Orographic Precipitation , 1989 .

[8]  R. C. Srivastava Parameterization of Raindrop Size Distributions. , 1978 .

[9]  T. Clark,et al.  A Cloud Physical Parameterization Method Using Movable Basis Functions: Stochastic Coalescence Parcel Calculations , 1983 .

[10]  K. D. Beheng A parameterization of warm cloud microphysical conversion processes , 1994 .

[11]  E. Richard,et al.  The Numerical Simulation of Clouds, Rains and Airflow over the Vosges and Black Forest Mountains: A Meso-β Model with Parameterized Microphysics , 1986 .

[12]  W. E. Langlois A rapidly convergent procedure for computing large-scale condensation in a dynamical weather model , 1973 .

[13]  B. Ferrier,et al.  A Double-Moment Multiple-Phase Four-Class Bulk Ice Scheme. Part I: Description , 1994 .

[14]  K. Beard,et al.  Collection and coalescence efficiencies for accretion , 1984 .

[15]  A. B. Long Solutions to the Droplet Collection Equation for Polynomial Kernels , 1974 .

[16]  G. Foote,et al.  Terminal Velocity of Raindrops Aloft , 1969 .

[17]  Jean-Pierre Pinty,et al.  A comprehensive two‐moment warm microphysical bulk scheme. II: 2D experiments with a non‐hydrostatic model , 2000 .

[18]  J. Curry,et al.  A statistical model of drop‐size spectra for stratocumulus clouds , 1996 .

[19]  A. Khain,et al.  Turbulence effects on the collision kernel. I: Formation of velocity deviations of drops falling within a turbulent three‐dimensional flow , 1997 .

[20]  G. Feingold,et al.  An Efficient Numerical Solution to the Stochastic Collection Equation , 1987 .

[21]  W. Cotton Numerical Simulation of Precipitation Development in Supercooled Cumuli—Part II , 1972 .

[22]  Conrad L. Ziegler,et al.  Retrieval of Thermal and Microphysical Variables in Observed Convective Storms. , 1985 .

[23]  William R. Cotton,et al.  Fitting Microphysical Observations of Nonsteady Convective Clouds to a Numerical Model: An Application of the Adjoint Technique of Data Assimilation to a Kinematic Model , 1993 .

[24]  J. Hudson,et al.  Cloud Microphysical Relationships in California Marine Stratus , 1995 .

[25]  Roland List,et al.  Collision, Coalescence and Breakup of Raindrops. Part I: Experimentally Established Coalescence Efficiencies and Fragment Size Distributions in Breakup , 1982 .

[26]  J. Verlinde,et al.  Analytical Solutions to the Collection Growth Equation: Comparison with Approximate Methods and Application to Cloud Microphysics Parameterization Schemes , 1990 .

[27]  D. Lilly,et al.  The effect of CCN regeneration on the evolution of stratocumulus cloud layers , 1994 .

[28]  Henri Sauvageot,et al.  The Shape of Averaged Drop Size Distributions , 1995 .

[29]  Roland List,et al.  Collision, Coalescence and Breakup of Raindrops. Part II: Parameterization of Fragment Size Distributions , 1982 .

[30]  John Hallett,et al.  On Size Distributions of Cloud Droplets Growing by Condensation: A New Conceptual Model , 1998 .

[31]  H. Pruppacher,et al.  A Numerical Determination of the Evolution of Cloud Drop Spectra due to Condensation on Natural Aerosol Particles , 1980 .

[32]  W. Cotton,et al.  New RAMS cloud microphysics parameterization part I: the single-moment scheme , 1995 .

[33]  P. Brown Mass Conservation Considerations in Analytic Representation of Raindrop Fragment Distributions , 1997 .

[34]  R. G. Corbin,et al.  The influence of entrainment on the evolution of cloud droplet spectra: I. A model of inhomogeneous mixing , 1980 .

[35]  Terry L. Clark,et al.  A Study in Cloud Phase Parameterization Using the Gamma Distribution , 1974 .

[36]  J. Brenguier,et al.  Cumulus Entrainment and Cloud Droplet Spectra: A Numerical Model within a Two-Dimensional Dynamical Framework , 1993 .

[37]  Edwin X. Berry,et al.  An Analysis of Cloud Drop Growth by Collection Part II. Single Initial Distributions , 1974 .

[38]  J. Cohard,et al.  Extending Twomey’s Analytical Estimate of Nucleated Cloud Droplet Concentrations from CCN Spectra , 1998 .

[39]  R. C. Srivastava,et al.  Evolution of Raindrop Size Distribution by Coalescence, Breakup, and Evaporation: Theory and Observations , 1995 .

[40]  C. Bretherton,et al.  Numerical Simulations and a Conceptual Model of the Stratocumulus to Trade Cumulus Transition , 1997 .

[41]  J. Hudson,et al.  Droplet Spectral Broadening in Marine Stratus , 1997 .

[42]  W. Hall,et al.  A Detailed Microphysical Model Within a Two-Dimensional Dynamic Framework: Model Description and Preliminary Results , 1980 .

[43]  Carlton W. Ulbrich,et al.  Rainfall Microphysics and Radar Properties: Analysis Methods for Drop Size Spectra , 1998 .

[44]  W. Hall,et al.  A Theoretical Study of the Wet Removal of Atmospheric Pollutants. Part I: The Redistribution of Aerosol Particles Captured through Nucleation and Impaction Scavenging by Growing Cloud Drops , 1985 .

[45]  S. Twomey,et al.  The nuclei of natural cloud formation part II: The supersaturation in natural clouds and the variation of cloud droplet concentration , 1959 .

[46]  G. Feingold,et al.  The Lognormal Fit to Raindrop Spectra from Frontal Convective Clouds in Israel , 1986 .

[47]  B. Stevens,et al.  Elements of the microphysical structure of numerically simulated nonprecipitating stratocumulus , 1996 .

[48]  R. L. Reed,et al.  Laboratory studies of the effects of mixing on the evolution of cloud droplet spectra , 1977 .