Modeling the Surface Energy Balance of the Core of an Old Mediterranean City: Marseille

Abstract The Town Energy Balance (TEB) model, which parameterizes the local-scale energy and water exchanges between urban surfaces and the atmosphere by treating the urban area as a series of urban canyons, coupled to the Interactions between Soil, Biosphere, and Atmosphere (ISBA) scheme, was run in offline mode for Marseille, France. TEB's performance is evaluated with observations of surface temperatures and surface energy balance fluxes collected during the field experiments to constrain models of atmospheric pollution and transport of emissions (ESCOMPTE)–urban boundary layer (UBL) campaign. Particular attention was directed to the influence of different surface databases, used for input parameters, on model predictions. Comparison of simulated canyon temperatures with observations resulted in improvements to TEB parameterizations by increasing the ventilation. Evaluation of the model with wall, road, and roof surface temperatures gave good results. The model succeeds in simulating a sensible heat fl...

[1]  R. Bornstein,et al.  The Two-Dimensional URBMET Urban Boundary Layer Model , 1975 .

[2]  Timothy R. Oke,et al.  Evaluation of the Town Energy Balance (TEB) Scheme with Direct Measurements from Dry Districts in Two Cities , 2002 .

[3]  Hans Peter Schmid,et al.  A model to estimate the source area contributing to turbulent exchange in the surface layer over patchy terrain , 1990 .

[4]  T. Oke,et al.  The energy balance of central Mexico City during the dry season , 1999 .

[5]  R. Lacaze,et al.  A Global Database of Land Surface Parameters at 1-km Resolution in Meteorological and Climate Models , 2003 .

[6]  Hans Peter Schmid,et al.  Experimental design for flux measurements: matching scales of observations and fluxes , 1997 .

[7]  Gerald Mills,et al.  Simulation of the energy budget of an urban canyon—I. Model structure and sensitivity test , 1993 .

[8]  J. Mahfouf,et al.  The ISBA land surface parameterisation scheme , 1996 .

[9]  Janet F. Barlow,et al.  A Wind Tunnel Model for Quantifying Fluxes in the Urban Boundary Layer , 2002 .

[10]  C. Kottmeier,et al.  The ESCOMPTE program: an overview , 2004 .

[11]  Timothy R. Oke,et al.  Aerodynamic Properties of Urban Areas Derived from Analysis of Surface Form , 1999 .

[12]  J. Monteith,et al.  Boundary Layer Climates. , 1979 .

[13]  Valéry Masson,et al.  Simulation of a Summer Urban Breeze Over Paris , 2002 .

[14]  Jong-Jin Baik,et al.  On the escape of pollutants from urban street canyons , 2002 .

[15]  Timothy R. Oke,et al.  Comparison of heat fluxes from summertime observations in the suburbs of four North American cities , 1995 .

[16]  T. Oke,et al.  Relative Efficiencies of Turbulent Transfer of Heat, Mass, and Momentum over a Patchy Urban Surface , 1995 .

[17]  C. Medaglia,et al.  A Numerical Study , 2005 .

[18]  Refrigerating ASHRAE handbook : 1981 fundamentals , 1981 .

[19]  T. Oke,et al.  An evapotranspiration‐interception model for urban areas , 1991 .

[20]  M. Bossard,et al.  CORINE land cover technical guide - Addendum 2000 , 2000 .

[21]  T. Oke,et al.  Wind, temperature and stability conditions in an east-west oriented urban canyon , 1988 .

[22]  Gaelle Vachon Transferts des polluants des sources fixes et mobiles dans la canopee urbaine : evaluation experimentale , 2001 .

[23]  Valéry Masson,et al.  A Physically-Based Scheme For The Urban Energy Budget In Atmospheric Models , 2000 .

[24]  G. T. Johnson,et al.  A numerical study of dispersion of passive scalars in city canyons , 1995 .

[25]  T. Oke,et al.  Suburban-rural energy balance comparisons in summer for Vancouver, B.C. , 1986 .

[26]  M. Best,et al.  A Model to Predict Surface Temperatures , 1998 .

[27]  J. Noilhan,et al.  The urban boundary-layer field campaign in marseille (ubl/clu-escompte): set-up and first results , 2005 .

[28]  R. McMullan,et al.  Environmental Science in Building , 1983 .

[29]  Haider Taha,et al.  Modifying a Mesoscale Meteorological Model to Better Incorporate Urban Heat Storage: A bulk-parameterization approach , 1999 .

[30]  Jong-Jin Baik,et al.  A Numerical Study of Thermal Effects on Flow and Pollutant Dispersion in Urban Street Canyons , 1999 .

[31]  A. Clappier,et al.  An Urban Surface Exchange Parameterisation for Mesoscale Models , 2002 .

[32]  S. Planton,et al.  A Simple Parameterization of Land Surface Processes for Meteorological Models , 1989 .

[33]  T. Oke,et al.  Sensible heat flux estimated over the city of Marseille, using a LAS scintillometer , 2002 .

[34]  Hervé Giordani,et al.  A modified parameterization of flux-profile relationships in the surface layer using different roughness length values for heat and momentum , 1995 .

[35]  Refrigerating ASHRAE handbook and product directory /published by the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc , 1977 .

[36]  Véronique Ducrocq,et al.  The Meso-NH Atmospheric Simulation System. Part I: adiabatic formulation and control simulations , 1997 .

[37]  C. Grimmond The suburban energy balance: Methodological considerations and results for a mid-latitude west coast city under winter and spring conditions , 1992 .

[38]  Timothy R. Oke,et al.  Heat Storage in Urban Areas: Local-Scale Observations and Evaluation of a Simple Model , 1999 .

[39]  Patrice G. Mestayer,et al.  Development of a software to describe the city morphology and to compute aerodynamic parameters from an urban data base , 2002 .

[40]  James A. Voogt,et al.  Modeling Surface Sensible Heat Flux Using Surface Radiative Temperatures in a Simple Urban Area , 2000 .