Optimal Design of Heterogeneous Materials

This article reviews recent inverse techniques that we have devised to optimize the structure and macroscopic properties of heterogeneous materials such as composite materials, porous media, colloidal dispersions, and polymer blends. Optimization methods provide a systematic means of designing materials with tailored properties and microstructures for a specific application. This article focuses on two inverse problems that are solved via optimization techniques: (a) the topology optimization procedure used to design heterogeneous materials and (b) stochastic optimization methods employed to reconstruct or construct microstructures.

[1]  Ole Sigmund,et al.  On the design of 1–3 piezocomposites using topology optimization , 1998 .

[2]  Aleksandar Donev,et al.  Minimal surfaces and multifunctionality , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[3]  Salvatore Torquato,et al.  Designer disordered materials with large, complete photonic band gaps , 2009, Proceedings of the National Academy of Sciences.

[4]  S. Torquato,et al.  Connection between the conductivity and bulk modulus of isotropic composite materials , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[5]  David R. McKenzie,et al.  The conductivity of lattices of spheres - II. The body centred and face centred cubic lattices , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[6]  S. Torquato,et al.  Rigorous connection between physical properties of porous rocks , 1998 .

[7]  S. Torquato,et al.  Optimal design of manufacturable three-dimensional composites with multifunctional characteristics , 2003 .

[8]  F. Štěpánek,et al.  Design of granule structure: Computational methods and experimental realization , 2006 .

[9]  Salvatore Torquato,et al.  Effective dielectric tensor for electromagnetic wave propagation in random media , 2007, 0709.1924.

[10]  G. Milton,et al.  Multicomponent composites, electrical networks and new types of continued fraction II , 1987 .

[11]  L. Greengard,et al.  On the numerical evaluation of electrostatic fields in composite materials , 1994, Acta Numerica.

[12]  Torquato Relationship between permeability and diffusion-controlled trapping constant of porous media. , 1990, Physical review letters.

[13]  F. Stillinger,et al.  Modeling heterogeneous materials via two-point correlation functions. II. Algorithmic details and applications. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Lee,et al.  Random-walk simulation of diffusion-controlled processes among static traps. , 1989, Physical review. B, Condensed matter.

[15]  L. Rayleigh,et al.  LVI. On the influence of obstacles arranged in rectangular order upon the properties of a medium , 1892 .

[16]  Masami Yamada,et al.  Geometrical Study of the Pair Distribution Function in the Many-Body Problem , 1961 .

[17]  M. Avellaneda,et al.  Diffusion and reaction in heterogeneous media: Pore size distribution, relaxation times, and mean survival time , 1991 .

[18]  S. Torquato,et al.  Chord-length distribution function for two-phase random media. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[19]  Salvatore Torquato,et al.  Modeling of physical properties of composite materials , 2000 .

[20]  Graeme W. Milton,et al.  Bounds on the complex permittivity of a two‐component composite material , 1981 .

[21]  Salvatore Torquato,et al.  Inverse optimization techniques for targeted self-assembly , 2008, 0811.0040.

[22]  Salvatore Torquato,et al.  Dense sphere packings from optimized correlation functions. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  F. Stillinger,et al.  Estimates of the optimal density of sphere packings in high dimensions , 2007, 0705.1482.

[24]  S. Torquato Microstructure characterization and bulk properties of disordered two-phase media , 1986 .

[25]  R. Hilfer,et al.  Reconstruction of random media using Monte Carlo methods. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[26]  Salvatore Torquato,et al.  Determining elastic behavior of composites by the boundary element method , 1993 .

[27]  Ole Sigmund,et al.  Design of materials with extreme thermal expansion using a three-phase topology optimization method , 1997, Smart Structures.

[28]  Salvatore Torquato,et al.  Microstructure of two‐phase random media. I. The n‐point probability functions , 1982 .

[29]  S. Torquato Random Heterogeneous Materials , 2002 .

[30]  Teubner,et al.  Transport properties of heterogeneous materials derived from Gaussian random fields: Bounds and simulation. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[31]  S. Shtrikman,et al.  A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials , 1962 .

[32]  Torquato,et al.  Link between the conductivity and elastic moduli of composite materials. , 1993, Physical review letters.

[33]  S. Torquatoa Exact conditions on physically realizable correlation functions of random media , 1999 .

[34]  T I Zohdi,et al.  Genetic design of solids possessing a random–particulate microstructure , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[35]  Salvatore Torquato,et al.  A variational level set approach for surface area minimization of triply-periodic surfaces , 2007, J. Comput. Phys..

[36]  Martin P. Bendsøe,et al.  Optimization of Structural Topology, Shape, And Material , 1995 .

[37]  Edward J. Garboczi,et al.  An algorithm for computing the effective linear elastic properties of heterogeneous materials: Three-dimensional results for composites with equal phase poisson ratios , 1995 .

[38]  Salvatore Torquato Necessary Conditions on Realizable Two-Point Correlation Functions of Random Media† , 2006 .

[39]  Salvatore Torquato,et al.  Generating random media from limited microstructural information via stochastic optimization , 1999 .

[40]  S. Torquato,et al.  Multifunctional composites: optimizing microstructures for simultaneous transport of heat and electricity. , 2002, Physical review letters.

[41]  Graeme W. Milton,et al.  Bounds on the complex dielectric constant of a composite material , 1980 .

[42]  Salvatore Torquato,et al.  Equi-g(r) sequence of systems derived from the square-well potential , 2002 .

[43]  Graeme W. Milton,et al.  Multicomponent composites, electrical networks and new types of continued fraction I , 1987 .

[44]  Rintoul,et al.  Reconstruction of the Structure of Dispersions , 1997, Journal of colloid and interface science.

[45]  Salvatore Torquato,et al.  New Conjectural Lower Bounds on the Optimal Density of Sphere Packings , 2006, Exp. Math..

[46]  P. Bentley,et al.  Investigating the evolvability of biologically inspired CA. , 2004 .

[47]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[48]  Salvatore Torquato,et al.  Effective conductivity of suspensions of hard spheres by Brownian motion simulation , 1991 .

[49]  F. Stillinger,et al.  Random sequential addition of hard spheres in high Euclidean dimensions. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[50]  F. Stillinger,et al.  Exactly solvable disordered sphere-packing model in arbitrary-dimensional Euclidean spaces. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  J. Quintanilla Necessary and sufficient conditions for the two-point phase probability function of two-phase random media , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[52]  D. Weaire,et al.  A counter-example to Kelvin's conjecture on minimal surfaces , 1994 .

[53]  Salvatore Torquato,et al.  Rigorous link between fluid permeability, electrical conductivity, and relaxation times for transport in porous media , 1991 .

[54]  F. H. Stillinger,et al.  Controlling the Short-Range Order and Packing Densities of Many-Particle Systems† , 2002 .

[55]  V. Zhikov,et al.  Homogenization of Differential Operators and Integral Functionals , 1994 .

[56]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[57]  Salvatore Torquato,et al.  Optimal and Manufacturable Two-dimensional, Kagomé-like Cellular Solids , 2002 .

[58]  S. Torquato,et al.  Optimal bounds on the trapping constant and permeability of porous media. , 2004, Physical review letters.

[59]  Salvatore Torquato,et al.  Iso-g(2) Processes in Equilibrium Statistical Mechanics† , 2001 .

[60]  Pierre M. Adler,et al.  Porous media : geometry and transports , 1992 .

[61]  Robert V. Kohn,et al.  Optimal bounds for the effective energy of a mixture of isotropic, incompressible, elastic materials , 1988 .

[62]  S. Torquato,et al.  Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .

[63]  F. Stillinger,et al.  A superior descriptor of random textures and its predictive capacity , 2009, Proceedings of the National Academy of Sciences.

[64]  N. Phan-Thien,et al.  New bounds on effective elastic moduli of two-component materials , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[65]  John G. Hagedorn,et al.  Multiscale modeling of fluid transport in heterogeneous materials using discrete Boltzmann methods , 2002 .

[66]  Hilfer,et al.  Stochastic reconstruction of sandstones , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[67]  W. Curtin,et al.  Using microstructure reconstruction to model mechanical behavior in complex microstructures , 2006 .

[68]  S. Torquato,et al.  GEOMETRICAL-PARAMETER BOUNDS ON THE EFFECTIVE MODULI OF COMPOSITES , 1995 .

[69]  G. Milton The Theory of Composites , 2002 .

[70]  H. R. Anderson,et al.  Scattering by an Inhomogeneous Solid. II. The Correlation Function and Its Application , 1957 .

[71]  S. Torquato,et al.  Optimized structures for photonic quasicrystals. , 2008, Physical review letters.

[72]  Salvatore Torquato,et al.  Aspects of correlation function realizability , 2003 .

[73]  Kenneth Stuart Sorbie,et al.  3D Stochastic Modelling of Heterogeneous Porous Media – Applications to Reservoir Rocks , 2006 .

[74]  O. Costin,et al.  On the construction of particle distributions with specified single and pair densities , 2004 .

[75]  Leslie Greengard,et al.  On the Numerical Evaluation of Electrostatic Fields in Dense Random Dispersions of Cylinders , 1997 .

[76]  E. R. Speer,et al.  Realizability of Point Processes , 2007 .

[77]  Andrej Cherkaev,et al.  On the effective conductivity of polycrystals and a three‐dimensional phase‐interchange inequality , 1988 .

[78]  Salvatore Torquato,et al.  On the use of homogenization theory to design optimal piezocomposites for hydrophone applications , 1997 .

[79]  F. Stillinger,et al.  Modeling heterogeneous materials via two-point correlation functions: basic principles. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[80]  S. Torquato,et al.  Reconstructing random media , 1998 .

[81]  Zhou,et al.  Dynamic permeability in porous media. , 1988, Physical review letters.

[82]  S. Torquato,et al.  Microstructure of two‐phase random media. II. The Mayer–Montroll and Kirkwood–Salsburg hierarchies , 1983 .

[83]  Ines Gloeckner,et al.  Variational Methods for Structural Optimization , 2002 .

[84]  John,et al.  Strong localization of photons in certain disordered dielectric superlattices. , 1987, Physical review letters.

[85]  Ole Sigmund,et al.  Systematic design of phononic band–gap materials and structures by topology optimization , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[86]  Salvatore Torquato,et al.  Effective-medium approximation for composite media: Realizable single-scale dispersions , 2001 .

[87]  Jana Gevertz,et al.  Mean survival times of absorbing triply periodic minimal surfaces. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[88]  Torquato,et al.  n-point probability functions for a lattice model of heterogeneous media. , 1990, Physical review. B, Condensed matter.

[89]  P. Bentley,et al.  Using genetic algorithms to evolve three-dimensional microstructures from two-dimensional micrographs , 2005 .

[90]  Salvatore Torquato,et al.  Realizability issues for iso-g (2) processes , 2005 .

[91]  S. Torquato,et al.  Fluid permeabilities of triply periodic minimal surfaces. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[92]  Salvatore Torquato,et al.  Two‐point cluster function for continuum percolation , 1988 .

[93]  Salvatore Torquato,et al.  Effective stiffness tensor of composite media—I. Exact series expansions , 1997 .

[94]  S. Torquato,et al.  Rigorous link between the conductivity and elastic moduli of fibre-reinforced composite materials , 1995, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[95]  J. Helsing Bounds on the shear modulus of composites by interface integral methods , 1994 .

[96]  Salvatore Torquato,et al.  Optimal design of 1-3 composite piezoelectrics , 1997 .

[97]  J. Maxwell A Treatise on Electricity and Magnetism , 1873, Nature.

[98]  Salvatore Torquato,et al.  Thermal expansion of isotropic multiphase composites and polycrystals , 1997 .

[99]  Ole Sigmund,et al.  Geometric properties of optimal photonic crystals. , 2008, Physical review letters.

[100]  Salvatore Torquato,et al.  Local density fluctuations, hyperuniformity, and order metrics. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[101]  S. Torquato,et al.  Matrix laminate composites: Realizable approximations for the effective moduli of piezoelectric dispersions , 1999 .

[102]  G. Milton Correlation of the electromagnetic and elastic properties of composites and microgeometries corresponding with effective medium approximations , 1984 .

[103]  Salvatore Torquato,et al.  Designing composite microstructures with targeted properties , 2001 .

[104]  Martin P. Bendsøe Topology Optimization , 2009, Encyclopedia of Optimization.

[105]  David J. Bergman,et al.  The dielectric constant of a composite material—A problem in classical physics , 1978 .

[106]  S. Torquato,et al.  Lineal-path function for random heterogeneous materials. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[107]  S. Torquato,et al.  Reconstructing random media. II. Three-dimensional media from two-dimensional cuts , 1998 .

[108]  Graeme W. Milton,et al.  A fast numerical scheme for computing the response of composites using grid refinement , 1999 .

[109]  S. Torquato,et al.  Generating microstructures with specified correlation functions , 2001 .

[110]  O. Sigmund,et al.  Design and fabrication of compliant micromechanisms and structures with negative Poisson's ratio , 1996, Proceedings of Ninth International Workshop on Micro Electromechanical Systems.

[111]  Salvatore Torquato,et al.  Complete band gaps in two-dimensional photonic quasicrystals , 2009, 1007.3555.

[112]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[113]  Edward J. Garboczi,et al.  Multiscale Analytical/Numerical Theory of the Diffusivity of Concrete , 1998 .