Optimal Design of Heterogeneous Materials
暂无分享,去创建一个
[1] Ole Sigmund,et al. On the design of 1–3 piezocomposites using topology optimization , 1998 .
[2] Aleksandar Donev,et al. Minimal surfaces and multifunctionality , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[3] Salvatore Torquato,et al. Designer disordered materials with large, complete photonic band gaps , 2009, Proceedings of the National Academy of Sciences.
[4] S. Torquato,et al. Connection between the conductivity and bulk modulus of isotropic composite materials , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[5] David R. McKenzie,et al. The conductivity of lattices of spheres - II. The body centred and face centred cubic lattices , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[6] S. Torquato,et al. Rigorous connection between physical properties of porous rocks , 1998 .
[7] S. Torquato,et al. Optimal design of manufacturable three-dimensional composites with multifunctional characteristics , 2003 .
[8] F. Štěpánek,et al. Design of granule structure: Computational methods and experimental realization , 2006 .
[9] Salvatore Torquato,et al. Effective dielectric tensor for electromagnetic wave propagation in random media , 2007, 0709.1924.
[10] G. Milton,et al. Multicomponent composites, electrical networks and new types of continued fraction II , 1987 .
[11] L. Greengard,et al. On the numerical evaluation of electrostatic fields in composite materials , 1994, Acta Numerica.
[12] Torquato. Relationship between permeability and diffusion-controlled trapping constant of porous media. , 1990, Physical review letters.
[13] F. Stillinger,et al. Modeling heterogeneous materials via two-point correlation functions. II. Algorithmic details and applications. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.
[14] Lee,et al. Random-walk simulation of diffusion-controlled processes among static traps. , 1989, Physical review. B, Condensed matter.
[15] L. Rayleigh,et al. LVI. On the influence of obstacles arranged in rectangular order upon the properties of a medium , 1892 .
[16] Masami Yamada,et al. Geometrical Study of the Pair Distribution Function in the Many-Body Problem , 1961 .
[17] M. Avellaneda,et al. Diffusion and reaction in heterogeneous media: Pore size distribution, relaxation times, and mean survival time , 1991 .
[18] S. Torquato,et al. Chord-length distribution function for two-phase random media. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[19] Salvatore Torquato,et al. Modeling of physical properties of composite materials , 2000 .
[20] Graeme W. Milton,et al. Bounds on the complex permittivity of a two‐component composite material , 1981 .
[21] Salvatore Torquato,et al. Inverse optimization techniques for targeted self-assembly , 2008, 0811.0040.
[22] Salvatore Torquato,et al. Dense sphere packings from optimized correlation functions. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.
[23] F. Stillinger,et al. Estimates of the optimal density of sphere packings in high dimensions , 2007, 0705.1482.
[24] S. Torquato. Microstructure characterization and bulk properties of disordered two-phase media , 1986 .
[25] R. Hilfer,et al. Reconstruction of random media using Monte Carlo methods. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[26] Salvatore Torquato,et al. Determining elastic behavior of composites by the boundary element method , 1993 .
[27] Ole Sigmund,et al. Design of materials with extreme thermal expansion using a three-phase topology optimization method , 1997, Smart Structures.
[28] Salvatore Torquato,et al. Microstructure of two‐phase random media. I. The n‐point probability functions , 1982 .
[29] S. Torquato. Random Heterogeneous Materials , 2002 .
[30] Teubner,et al. Transport properties of heterogeneous materials derived from Gaussian random fields: Bounds and simulation. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[31] S. Shtrikman,et al. A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials , 1962 .
[32] Torquato,et al. Link between the conductivity and elastic moduli of composite materials. , 1993, Physical review letters.
[33] S. Torquatoa. Exact conditions on physically realizable correlation functions of random media , 1999 .
[34] T I Zohdi,et al. Genetic design of solids possessing a random–particulate microstructure , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[35] Salvatore Torquato,et al. A variational level set approach for surface area minimization of triply-periodic surfaces , 2007, J. Comput. Phys..
[36] Martin P. Bendsøe,et al. Optimization of Structural Topology, Shape, And Material , 1995 .
[37] Edward J. Garboczi,et al. An algorithm for computing the effective linear elastic properties of heterogeneous materials: Three-dimensional results for composites with equal phase poisson ratios , 1995 .
[38] Salvatore Torquato. Necessary Conditions on Realizable Two-Point Correlation Functions of Random Media† , 2006 .
[39] Salvatore Torquato,et al. Generating random media from limited microstructural information via stochastic optimization , 1999 .
[40] S. Torquato,et al. Multifunctional composites: optimizing microstructures for simultaneous transport of heat and electricity. , 2002, Physical review letters.
[41] Graeme W. Milton,et al. Bounds on the complex dielectric constant of a composite material , 1980 .
[42] Salvatore Torquato,et al. Equi-g(r) sequence of systems derived from the square-well potential , 2002 .
[43] Graeme W. Milton,et al. Multicomponent composites, electrical networks and new types of continued fraction I , 1987 .
[44] Rintoul,et al. Reconstruction of the Structure of Dispersions , 1997, Journal of colloid and interface science.
[45] Salvatore Torquato,et al. New Conjectural Lower Bounds on the Optimal Density of Sphere Packings , 2006, Exp. Math..
[46] P. Bentley,et al. Investigating the evolvability of biologically inspired CA. , 2004 .
[47] Steven G. Johnson,et al. Photonic Crystals: Molding the Flow of Light , 1995 .
[48] Salvatore Torquato,et al. Effective conductivity of suspensions of hard spheres by Brownian motion simulation , 1991 .
[49] F. Stillinger,et al. Random sequential addition of hard spheres in high Euclidean dimensions. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.
[50] F. Stillinger,et al. Exactly solvable disordered sphere-packing model in arbitrary-dimensional Euclidean spaces. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.
[51] J. Quintanilla. Necessary and sufficient conditions for the two-point phase probability function of two-phase random media , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[52] D. Weaire,et al. A counter-example to Kelvin's conjecture on minimal surfaces , 1994 .
[53] Salvatore Torquato,et al. Rigorous link between fluid permeability, electrical conductivity, and relaxation times for transport in porous media , 1991 .
[54] F. H. Stillinger,et al. Controlling the Short-Range Order and Packing Densities of Many-Particle Systems† , 2002 .
[55] V. Zhikov,et al. Homogenization of Differential Operators and Integral Functionals , 1994 .
[56] A. Bensoussan,et al. Asymptotic analysis for periodic structures , 1979 .
[57] Salvatore Torquato,et al. Optimal and Manufacturable Two-dimensional, Kagomé-like Cellular Solids , 2002 .
[58] S. Torquato,et al. Optimal bounds on the trapping constant and permeability of porous media. , 2004, Physical review letters.
[59] Salvatore Torquato,et al. Iso-g(2) Processes in Equilibrium Statistical Mechanics† , 2001 .
[60] Pierre M. Adler,et al. Porous media : geometry and transports , 1992 .
[61] Robert V. Kohn,et al. Optimal bounds for the effective energy of a mixture of isotropic, incompressible, elastic materials , 1988 .
[62] S. Torquato,et al. Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .
[63] F. Stillinger,et al. A superior descriptor of random textures and its predictive capacity , 2009, Proceedings of the National Academy of Sciences.
[64] N. Phan-Thien,et al. New bounds on effective elastic moduli of two-component materials , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[65] John G. Hagedorn,et al. Multiscale modeling of fluid transport in heterogeneous materials using discrete Boltzmann methods , 2002 .
[66] Hilfer,et al. Stochastic reconstruction of sandstones , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[67] W. Curtin,et al. Using microstructure reconstruction to model mechanical behavior in complex microstructures , 2006 .
[68] S. Torquato,et al. GEOMETRICAL-PARAMETER BOUNDS ON THE EFFECTIVE MODULI OF COMPOSITES , 1995 .
[69] G. Milton. The Theory of Composites , 2002 .
[70] H. R. Anderson,et al. Scattering by an Inhomogeneous Solid. II. The Correlation Function and Its Application , 1957 .
[71] S. Torquato,et al. Optimized structures for photonic quasicrystals. , 2008, Physical review letters.
[72] Salvatore Torquato,et al. Aspects of correlation function realizability , 2003 .
[73] Kenneth Stuart Sorbie,et al. 3D Stochastic Modelling of Heterogeneous Porous Media – Applications to Reservoir Rocks , 2006 .
[74] O. Costin,et al. On the construction of particle distributions with specified single and pair densities , 2004 .
[75] Leslie Greengard,et al. On the Numerical Evaluation of Electrostatic Fields in Dense Random Dispersions of Cylinders , 1997 .
[76] E. R. Speer,et al. Realizability of Point Processes , 2007 .
[77] Andrej Cherkaev,et al. On the effective conductivity of polycrystals and a three‐dimensional phase‐interchange inequality , 1988 .
[78] Salvatore Torquato,et al. On the use of homogenization theory to design optimal piezocomposites for hydrophone applications , 1997 .
[79] F. Stillinger,et al. Modeling heterogeneous materials via two-point correlation functions: basic principles. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.
[80] S. Torquato,et al. Reconstructing random media , 1998 .
[81] Zhou,et al. Dynamic permeability in porous media. , 1988, Physical review letters.
[82] S. Torquato,et al. Microstructure of two‐phase random media. II. The Mayer–Montroll and Kirkwood–Salsburg hierarchies , 1983 .
[83] Ines Gloeckner,et al. Variational Methods for Structural Optimization , 2002 .
[84] John,et al. Strong localization of photons in certain disordered dielectric superlattices. , 1987, Physical review letters.
[85] Ole Sigmund,et al. Systematic design of phononic band–gap materials and structures by topology optimization , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[86] Salvatore Torquato,et al. Effective-medium approximation for composite media: Realizable single-scale dispersions , 2001 .
[87] Jana Gevertz,et al. Mean survival times of absorbing triply periodic minimal surfaces. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.
[88] Torquato,et al. n-point probability functions for a lattice model of heterogeneous media. , 1990, Physical review. B, Condensed matter.
[89] P. Bentley,et al. Using genetic algorithms to evolve three-dimensional microstructures from two-dimensional micrographs , 2005 .
[90] Salvatore Torquato,et al. Realizability issues for iso-g (2) processes , 2005 .
[91] S. Torquato,et al. Fluid permeabilities of triply periodic minimal surfaces. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.
[92] Salvatore Torquato,et al. Two‐point cluster function for continuum percolation , 1988 .
[93] Salvatore Torquato,et al. Effective stiffness tensor of composite media—I. Exact series expansions , 1997 .
[94] S. Torquato,et al. Rigorous link between the conductivity and elastic moduli of fibre-reinforced composite materials , 1995, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.
[95] J. Helsing. Bounds on the shear modulus of composites by interface integral methods , 1994 .
[96] Salvatore Torquato,et al. Optimal design of 1-3 composite piezoelectrics , 1997 .
[97] J. Maxwell. A Treatise on Electricity and Magnetism , 1873, Nature.
[98] Salvatore Torquato,et al. Thermal expansion of isotropic multiphase composites and polycrystals , 1997 .
[99] Ole Sigmund,et al. Geometric properties of optimal photonic crystals. , 2008, Physical review letters.
[100] Salvatore Torquato,et al. Local density fluctuations, hyperuniformity, and order metrics. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.
[101] S. Torquato,et al. Matrix laminate composites: Realizable approximations for the effective moduli of piezoelectric dispersions , 1999 .
[102] G. Milton. Correlation of the electromagnetic and elastic properties of composites and microgeometries corresponding with effective medium approximations , 1984 .
[103] Salvatore Torquato,et al. Designing composite microstructures with targeted properties , 2001 .
[104] Martin P. Bendsøe. Topology Optimization , 2009, Encyclopedia of Optimization.
[105] David J. Bergman,et al. The dielectric constant of a composite material—A problem in classical physics , 1978 .
[106] S. Torquato,et al. Lineal-path function for random heterogeneous materials. , 1992, Physical review. A, Atomic, molecular, and optical physics.
[107] S. Torquato,et al. Reconstructing random media. II. Three-dimensional media from two-dimensional cuts , 1998 .
[108] Graeme W. Milton,et al. A fast numerical scheme for computing the response of composites using grid refinement , 1999 .
[109] S. Torquato,et al. Generating microstructures with specified correlation functions , 2001 .
[110] O. Sigmund,et al. Design and fabrication of compliant micromechanisms and structures with negative Poisson's ratio , 1996, Proceedings of Ninth International Workshop on Micro Electromechanical Systems.
[111] Salvatore Torquato,et al. Complete band gaps in two-dimensional photonic quasicrystals , 2009, 1007.3555.
[112] M. Bendsøe,et al. Generating optimal topologies in structural design using a homogenization method , 1988 .
[113] Edward J. Garboczi,et al. Multiscale Analytical/Numerical Theory of the Diffusivity of Concrete , 1998 .