Plant metallothionein domains: functional insight into physiological metal binding and protein folding.

[1]  L. Villarreal,et al.  Zn- and Cd-metallothionein recombinant species from the most diverse phyla may contain sulfide (S2-) ligands. , 2005, Angewandte Chemie.

[2]  L. Villarreal,et al.  Influence of chloride ligands on the structure of Zn- and Cd-metallothionein species. , 2005, Archives of biochemistry and biophysics.

[3]  P. Goldsbrough,et al.  A plant type 2 metallothionein (MT) from cork tissue responds to oxidative stress. , 2004, Journal of experimental botany.

[4]  M. Capdevila,et al.  Mercury(II) binding to metallothioneins. Variables governing the formation and structural features of the mammalian Hg-MT species. , 2004, European journal of biochemistry.

[5]  L. Villarreal,et al.  Functional Differentiation in the Mammalian Metallothionein Gene Family , 2004, Journal of Biological Chemistry.

[6]  Joohyun Lee,et al.  Arabidopsis metallothioneins 2a and 3 enhance resistance to cadmium when expressed in Vicia faba guard cells , 2004, Plant Molecular Biology.

[7]  Y. Hathout,et al.  Evidence for zinc ion sharing in metallothionein dimers provided by collision-induced dissociation , 2004, 1103.4030.

[8]  P. Goldsbrough,et al.  Characterization of the Arabidopsis metallothionein gene family: tissue-specific expression and induction during senescence and in response to copper. , 2003, The New phytologist.

[9]  L. Villarreal,et al.  MTO: the second member of a Drosophila dual copper‐thionein system , 2003, FEBS letters.

[10]  S. Abdullah,et al.  Isolation and characterisation of two divergent type 3 metallothioneins from oil palm, Elaeis guineensis , 2002 .

[11]  B. Roschitzki,et al.  A distinct Cu4-thiolate cluster of human metallothionein-3 is located in the N-terminal domain , 2002, JBIC Journal of Biological Inorganic Chemistry.

[12]  M. Valls,et al.  A New Insight into Metallothionein (MT) Classification and Evolution , 2001, The Journal of Biological Chemistry.

[13]  W. Ernst,et al.  Enhanced copper tolerance in Silene vulgaris (Moench) Garcke populations from copper mines is associated with increased transcript levels of a 2b-type metallothionein gene. , 2001, Plant physiology.

[14]  S. Atrian,et al.  Zinc(II) is required for the in vivo and in vitro folding of mouse copper metallothionein in two domains , 2001, JBIC Journal of Biological Inorganic Chemistry.

[15]  N. Zhao,et al.  Modeling of kiwifruit metallothionein kiwi503 , 2000 .

[16]  M. Valls,et al.  Drosophila MTN: a metazoan copper‐thionein related to fungal forms , 2000, FEBS letters.

[17]  D. Thiele,et al.  Pipes and wiring: the regulation of copper uptake and distribution in yeast. , 1999, Trends in microbiology.

[18]  T. O’Halloran,et al.  Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. , 1999, Science.

[19]  P. Kille,et al.  Identification and characterization of a recombinant metallothionein protein from a marine alga, Fucus vesiculosus , 2022 .

[20]  M. Garcia-Hernandez,et al.  Metallothioneins 1 and 2 have distinct but overlapping expression patterns in Arabidopsis. , 1998, Plant physiology.

[21]  B. Oliva,et al.  Binding of excess cadmium(II) to Cd7-metallothionein from recombinant mouse Zn7-metallothionein 1. UV-VIS absorption and circular dichroism studies and theoretical location approach by surface accessibility analysis. , 1997, Journal of inorganic biochemistry.

[22]  R. Gonzàlez-Duarte,et al.  Recombinant synthesis of mouse Zn3-β and Zn4-α metallothionein 1 domains and characterization of their cadmium(II) binding capacity , 1997, Cellular and Molecular Life Sciences CMLS.

[23]  T. Tranbarger,et al.  The isolation of a novel metallothionein-related cDNA expressed in somatic and zygotic embryos of Douglas-fir: regulation by ABA, osmoticum, and metal ions , 1997, Plant Molecular Biology.

[24]  Karam B. Singh,et al.  Analysis of type 1 metallothionein cDNAs in Vicia faba , 1997, Plant Molecular Biology.

[25]  D. Winge,et al.  Enhanced Effectiveness of Copper Ion Buffering by CUP1 Metallothionein Compared with CRS5 Metallothionein in Saccharomyces cerevisiae* , 1996, The Journal of Biological Chemistry.

[26]  J S Valentine,et al.  Superoxide Dismutase Activity Is Essential for Stationary Phase Survival in Saccharomyces cerevisiae , 1996, The Journal of Biological Chemistry.

[27]  A. Murphy,et al.  Comparison of Metallothionein Gene Expression and Nonprotein Thiols in Ten Arabidopsis Ecotypes (Correlation with Copper Tolerance) , 1995, Plant physiology.

[28]  P. Goldsbrough,et al.  Structure, organization and expression of the metallothionein gene family inArabidopsis , 1995, Molecular and General Genetics MGG.

[29]  C. Rivin,et al.  Characterization and Expression of a cDNA Encoding a Seed-Specific Metallothionein in Maize , 1995, Plant physiology.

[30]  R. Müller,et al.  Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. , 1995, Gene.

[31]  P. Goldsbrough,et al.  Functional homologs of fungal metallothionein genes from Arabidopsis. , 1994, The Plant cell.

[32]  R. Meneghini,et al.  Metallothionein protects DNA from oxidative damage. , 1993, The Biochemical journal.

[33]  D. Winge,et al.  A plant metallothionein produced in E. coli , 1991, FEBS letters.

[34]  A. B. Tomsett,et al.  Metallothionein genes from the flowering plant Mimulus guttatus , 1990, FEBS letters.

[35]  C. D. Walton,et al.  Micromolar protein concentrations and metalloprotein stoichiometries obtained by inductively coupled plasma atomic emission spectrometric determination of sulfur. , 1988, Analytical chemistry.

[36]  Colin Eaborn,et al.  Comprehensive Coordination Chemistry , 1988 .

[37]  D. Winge,et al.  Independence of the domains of metallothionein in metal binding. , 1985, The Journal of biological chemistry.

[38]  K. Lerch Copper metallothionein, a copper-binding protein from Neurospora crassa , 1980, Nature.

[39]  W. E. Rauser Structure and function of metal chelators produced by plants , 2007, Cell Biochemistry and Biophysics.

[40]  J. Brkljačić,et al.  Expression analysis of buckwheat (Fagopyrum esculentum Moench) metallothionein-like gene (MT3) under different stress and physiological conditions. , 2004, Journal of plant physiology.

[41]  Y. Wong,et al.  The isolation and characterization of Type 1 metallothionein (MT) cDNA from a heavy-metal-tolerant plant, Festuca rubra cv. Merlin , 2003 .

[42]  C. Cobbett,et al.  Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. , 2002, Annual review of plant biology.

[43]  S. Stürzenbaum,et al.  Isolation and characterization of a self-sufficient one-domain protein. (Cd)-metallothionein from Eisenia foetida. , 2000, European journal of biochemistry.

[44]  R. Gonzàlez-Duarte,et al.  A new insight into the Ag+ and Cu+ binding sites in the metallothionein β domain , 1999 .

[45]  J. Gelpí,et al.  Replacement of terminal cysteine with histidine in the metallothionein α and β domains maintains its binding capacity , 1999 .

[46]  J. Zaia,et al.  Retention of Thiol Protons in Two Classes of Protein Zinc Ion Coordination Centers , 1996 .

[47]  M. Stillman,et al.  Copper binding to rabbit liver metallothionein. Formation of a continuum of copper(I)-thiolate stoichiometric species. , 1995, European journal of biochemistry.

[48]  D. Botstein,et al.  Manipulating yeast genome using plasmid vectors. , 1990, Methods in enzymology.