Solution for Multi-Objective Reactive Power Optimization Using Fuzzy Guided Tabu Search

A fuzzy guided tabu search (FGTS) algorithm for solving multi-objective reactive power optimization problem is presented. The problem is formulated as a non-linear constrained multi-objective problem with three competing objectives, viz., minimization of losses, cost of VAR sources, and improvement of voltage profile. The proposed algorithm is based on the combination of fuzzy logic strategy incorporated in tabu search (TS). The standard IEEE 30-bus system and practical Indian 76-bus system are used as the test systems. The results are encouraging and indicate the viability of the proposed technique. The proposed method is capable of generating diverse and well-distributed pareto-optimal solutions.

[1]  R. P. Kumudini Devi,et al.  Evolutionary programming based security constrained optimal power flow , 2004 .

[2]  Ying-Tung Hsiao,et al.  A computer package for optimal multi-objective VAr planning in large scale power systems , 1993 .

[3]  Y. L. Chen,et al.  Interactive fuzzy satisfying method for optimal multi-objective VAr planning in power systems , 1994 .

[4]  M. Abido Multiobjective optimal VAR dispatch considering control variable adjustment costs , 2009 .

[5]  Deqiang Gan,et al.  Large-scale var optimization and planning by tabu search , 1996 .

[6]  Li Zhihuan,et al.  Non-dominated sorting genetic algorithm-II for robust multi-objective optimal reactive power dispatch , 2010 .

[7]  Antonio Fernandes Dias,et al.  Multiobjective genetic algorithms applied to solve optimization problems , 2002 .

[8]  M. A. Abido,et al.  A niched Pareto genetic algorithm for multiobjective environmental/economic dispatch , 2003 .

[9]  C. Liu,et al.  Multiobjective VAr planning using the goal-attainment method , 1994 .

[10]  Loi Lei Lai,et al.  Application of evolutionary programming to reactive power planning-comparison with nonlinear programming approach , 1997 .

[11]  Y. L. Chen,et al.  Multi-objective VAr planning for large-scale power systems using projection-based two-layer simulated annealing algorithms , 2004 .

[12]  Mr. S. Durairaj,et al.  Multi-Objective VAR Dispatch Using Particle Swarm Optimization , 2005 .

[13]  C. S. Chang,et al.  Optimisation of maintenance schedules and extents for composite power systems using multi-objective evolutionary algorithm , 2009 .

[14]  A. Ebenezer Jeyakumar,et al.  A tabu search based hybrid optimization approach for a fuzzy modelled unit commitment problem , 2006 .

[15]  Chuangxin Guo,et al.  A multiagent-based particle swarm optimization approach for optimal reactive power dispatch , 2005 .

[16]  Giancarlo Mauri,et al.  Learning fuzzy rules with tabu search-an application to control , 1999, IEEE Trans. Fuzzy Syst..

[17]  K. S. Swarup,et al.  Solving multi-objective optimal power flow using differential evolution , 2008 .

[18]  Timothy J. E. Miller,et al.  Reactive Power Control In Electric Systems , 1982 .

[19]  Mohammad Ali Abido,et al.  A novel multiobjective evolutionary algorithm for optimal reactive power dispatch problem , 2003, 10th IEEE International Conference on Electronics, Circuits and Systems, 2003. ICECS 2003. Proceedings of the 2003.

[20]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[21]  M. A. Abido,et al.  Optimal VAR dispatch using a multiobjective evolutionary algorithm , 2005 .

[22]  N. Grudinin Reactive power optimization using successive quadratic programming method , 1998 .

[23]  Mohammad Ali Abido,et al.  Multiobjective Optimal VAR Dispatch Using Strength Pareto Evolutionary Algorithm , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[24]  William F. Tinney,et al.  Optimal Power Flow Solutions , 1968 .

[25]  Hossein Seifi,et al.  A new reactive power planning procedure for Iranian Power Grid , 2004 .