The Operator-Splitting Method for Cahn-Hilliard is Stable

We prove energy stability of a standard operator-splitting method for the Cahn-Hilliard equation. We establish uniform bound of Sobolev norms of the numerical solution and convergence of the splitting approximation. This is the first energy stability result for the operator-splitting method for the Cahn-Hilliard equation. Our analysis can be extended to many other models.

[1]  Zhifeng Weng,et al.  Analysis of the operator splitting scheme for the Cahn‐Hilliard equation with a viscosity term , 2019, Numerical Methods for Partial Differential Equations.

[2]  Chi-Wang Shu,et al.  Unconditional Energy Stability Analysis of a Second Order Implicit–Explicit Local Discontinuous Galerkin Method for the Cahn–Hilliard Equation , 2017, Journal of Scientific Computing.

[3]  Tao Tang,et al.  Stability of the semi-implicit method for the Cahn-Hilliard equation with logarithmic potentials , 2021, ArXiv.

[4]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[5]  Charles M. Elliott,et al.  The global dynamics of discrete semilinear parabolic equations , 1993 .

[6]  Zhonghua Qiao,et al.  Characterizing the Stabilization Size for Semi-Implicit Fourier-Spectral Method to Phase Field Equations , 2014, SIAM J. Numer. Anal..

[7]  Yinnian He,et al.  On large time-stepping methods for the Cahn--Hilliard equation , 2007 .

[8]  Fei Liu,et al.  Stabilized semi‐implicit spectral deferred correction methods for Allen–Cahn and Cahn–Hilliard equations , 2015 .

[9]  Tao Tang,et al.  Fast and stable explicit operator splitting methods for phase-field models , 2015, J. Comput. Phys..

[10]  Chert,et al.  Applications of semi-implicit Fourier-spectral method to phase field equations , 2004 .

[11]  Zhonghua Qiao,et al.  Gradient bounds for a thin film epitaxy equation , 2014 .

[12]  Jie Shen,et al.  Coarsening kinetics from a variable-mobility Cahn-Hilliard equation: application of a semi-implicit Fourier spectral method. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[13]  Steven M. Wise,et al.  Convergence Analysis of a Second Order Convex Splitting Scheme for the Modified Phase Field Crystal Equation , 2012, SIAM J. Numer. Anal..

[14]  B. D. Reddy,et al.  Operator-splitting methods for the 2D convective Cahn-Hilliard equation , 2019, Comput. Math. Appl..

[15]  Dong Li,et al.  On Second Order Semi-implicit Fourier Spectral Methods for 2D Cahn–Hilliard Equations , 2017, J. Sci. Comput..

[16]  Dong Li,et al.  On the stabilization size of semi-implicit fourier-spectral methods for 3D Cahn-Hilliard equations , 2017 .

[17]  A. Bertozzi,et al.  Unconditionally stable schemes for higher order inpainting , 2011 .

[18]  Tao Tang,et al.  Long Time Numerical Simulations for Phase-Field Problems Using p-Adaptive Spectral Deferred Correction Methods , 2015, SIAM J. Sci. Comput..

[19]  Keith Promislow,et al.  High accuracy solutions to energy gradient flows from material science models , 2014, J. Comput. Phys..

[20]  Cheng Wang,et al.  A convergent convex splitting scheme for the periodic nonlocal Cahn-Hilliard equation , 2014, Numerische Mathematik.

[21]  D. J. Eyre Unconditionally Gradient Stable Time Marching the Cahn-Hilliard Equation , 1998 .

[22]  Tao Tang,et al.  Stability Analysis of Large Time-Stepping Methods for Epitaxial Growth Models , 2006, SIAM J. Numer. Anal..

[23]  Cheng Wang,et al.  An $H^2$ convergence of a second-order convex-splitting, finite difference scheme for the three-dimensional Cahn–Hilliard equation , 2016 .

[24]  Thomas J. R. Hughes,et al.  Provably unconditionally stable, second-order time-accurate, mixed variational methods for phase-field models , 2011, J. Comput. Phys..

[25]  Xiaofeng Yang,et al.  Numerical approximations of Allen-Cahn and Cahn-Hilliard equations , 2010 .

[26]  Jie Shen,et al.  A New Class of Efficient and Robust Energy Stable Schemes for Gradient Flows , 2017, SIAM Rev..