Characterization of CMOS metal based dielectric loaded surface plasmon waveguides at telecom wavelengths.

Dielectric loaded surface plasmon waveguides (DLSPPWs) comprised of polymer ridges deposited on top of CMOS compatible metal thin films are investigated at telecom wavelengths. We perform a direct comparison of the properties of copper (Cu), aluminum (Al), titanium nitride (TiN) and gold (Au) based waveguides by implementing the same plasmonic waveguiding configuration for each metal. The DLSPPWs are characterized by leakage radiation microscopy and a fiber-to-fiber configuration mimicking the cut-back method. We introduce the ohmic loss rate (OLR) to analyze quantitatively the properties of the CMOS metal based DLSPPWs relative to the corresponding Au based waveguides. We show that the Cu, Al and TiN based waveguides feature extra ohmic loss compared to Au of 0.027 dB/μm, 0.18 dB/μm and 0.52 dB/μm at 1550nm respectively. The dielectric function of each metal extracted from ellipsometric spectroscopic measurements is used to model the properties of the DLSP-PWs. We find a fairly good agreement between experimental and modeled DLSPPWs properties except for Al featuring a large surface roughness. Finally, we conclude that TiN based waveguides sustaining intermediate effective index (in the range 1.05-1.25) plasmon modes propagate over very short distances restricting the the use of those modes in practical situations.

[1]  Viktoriia E. Babicheva,et al.  Experimental demonstration of titanium nitride plasmonic interconnects. , 2014, Optics express.

[2]  Vladimir M. Shalaev,et al.  Searching for better plasmonic materials , 2009, 0911.2737.

[3]  Laurent Markey,et al.  Thermo-optic control of dielectric-loaded plasmonic waveguide components. , 2010, Optics express.

[4]  L. Douillard,et al.  Loss mechanisms of surface plasmon polaritons propagating on a smooth polycrystalline Cu surface. , 2012, Optics express.

[5]  Harald Ditlbacher,et al.  Dielectric stripes on gold as surface plasmon waveguides , 2006 .

[6]  Alexey V. Krasavin,et al.  Active Nanophotonic Circuitry Based on Dielectric‐loaded Plasmonic Waveguides , 2015 .

[7]  Valentyn S Volkov,et al.  Ultralow-Loss CMOS Copper Plasmonic Waveguides. , 2016, Nano letters.

[8]  G. Millot,et al.  Grating Couplers for Fiber-to-Fiber Characterizations of Stand-Alone Dielectric Loaded Surface Plasmon Waveguide Components , 2012, Journal of Lightwave Technology.

[9]  Xiaoqiang Sun,et al.  Thermal UV treatment on SU-8 polymer for integrated optics , 2014 .

[10]  Sergey I. Bozhevolnyi,et al.  Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides , 2007 .

[11]  J. Weeber,et al.  Dihedron dielectric loaded surface plasmon athermal polarization converter. , 2014, Optics letters.

[12]  M. Kuittinen,et al.  Refractive index and extinction coefficient dependence of thin Al and Ir films on deposition technique and thickness. , 2007, Optics express.

[13]  D. Koller,et al.  Leakage radiation microscopy of surface plasmon polaritons , 2008, 1002.0725.

[14]  J. Goudonnet,et al.  Surface plasmon polariton propagation length: A direct comparison using photon scanning tunneling microscopy and attenuated total reflection , 2001 .

[15]  Y. L. Jeyachandran,et al.  Properties of titanium nitride films prepared by direct current magnetron sputtering , 2007 .

[16]  Harry A. Atwater,et al.  Low-Loss Plasmonic Metamaterials , 2011, Science.

[17]  Jonathan Grandidier,et al.  Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and Fourier plane leakage microscopy , 2008 .

[18]  Sergey I. Bozhevolnyi,et al.  Experimental demonstration of CMOS-compatible long-range dielectric-loaded surface plasmon-polariton waveguides (LR-DLSPPWs) , 2014, 2015 International Conference on Optical MEMS and Nanophotonics (OMN).

[19]  R. Salas-Montiel,et al.  Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics. , 2010, Nano letters.

[20]  Teri W. Odom,et al.  Screening plasmonic materials using pyramidal gratings , 2008, Proceedings of the National Academy of Sciences.

[21]  V. Shalaev,et al.  Alternative Plasmonic Materials: Beyond Gold and Silver , 2013, Advanced materials.

[22]  Igor Zorić,et al.  Localized surface plasmon resonances in aluminum nanodisks. , 2008, Nano letters.

[23]  D. Norris,et al.  Plasmonic Films Can Easily Be Better: Rules and Recipes , 2015, ACS photonics.

[24]  C. Charitidis,et al.  Combined electrical and mechanical properties of titanium nitride thin films as metallization materials , 1999 .

[25]  E. Gornik,et al.  Excitation of surface plasmons on titanium nitride films : determination of the dielectric function , 1994 .

[26]  Nikos Pleros,et al.  Active plasmonics in WDM traffic switching applications , 2012, Scientific Reports.

[27]  David Goldhaber-Gordon,et al.  Fully CMOS-compatible titanium nitride nanoantennas , 2016 .

[28]  Alexey V. Krasavin,et al.  Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides , 2007 .

[29]  A. Dereux,et al.  Efficient photo-thermal activation of gold nanoparticle-doped polymer plasmonic switches. , 2012, Optics express.

[30]  C. W. Ho,et al.  Excitation of surface plasma wave at TiN/air interface in the Kretschmann geometry , 2011 .