Stress testing ΛCDM with high-redshift galaxy candidates

[1]  L. Y. Aaron Yung,et al.  Dusty Starbursts Masquerading as Ultra-high Redshift Galaxies in JWST CEERS Observations , 2022, The Astrophysical Journal Letters.

[2]  T. Treu,et al.  The brightest galaxies at cosmic dawn , 2022, Monthly Notices of the Royal Astronomical Society.

[3]  G. Brammer,et al.  A population of red candidate massive galaxies ~600 Myr after the Big Bang , 2022, Nature.

[4]  D. Nardiello,et al.  Photometry and astrometry with JWST -- I. NIRCam Point Spread Functions and the first JWST colour-magnitude diagrams of a globular cluster , 2022, 2209.06547.

[5]  L. Y. Aaron Yung,et al.  A Long Time Ago in a Galaxy Far, Far Away: A Candidate z ∼ 12 Galaxy in Early JWST CEERS Imaging , 2022, The Astrophysical Journal Letters.

[6]  J. Kneib,et al.  Revealing Galaxy Candidates out to $z \sim 16$ with JWST Observations of the Lensing Cluster SMACS0723 , 2022, 2207.12338.

[7]  J. Dunlop,et al.  The evolution of the galaxy UV luminosity function at redshifts z ≃ 8 – 15 from deep JWST and ground-based near-infrared imaging , 2022, Monthly Notices of the Royal Astronomical Society.

[8]  A. Zitrin,et al.  First Batch of Candidate Galaxies at Redshifts 11 to 20 Revealed by the James Webb Space Telescope Early Release Observations , 2022, 2207.11558.

[9]  C. Conselice,et al.  Discovery and properties of ultra-high redshift galaxies (9 < z < 12) in the JWST ERO SMACS 0723 Field , 2022, Monthly Notices of the Royal Astronomical Society.

[10]  A. Fontana,et al.  Early Results from GLASS-JWST. III. Galaxy Candidates at z ∼9–15 , 2022, The Astrophysical Journal Letters.

[11]  R. Bouwens,et al.  Two Remarkably Luminous Galaxy Candidates at z ≈ 10–12 Revealed by JWST , 2022, The Astrophysical Journal Letters.

[12]  L. Gao,et al.  The Ultramarine Simulation: properties of dark matter haloes before redshift 5.5 , 2022, Monthly Notices of the Royal Astronomical Society.

[13]  S. Ando,et al.  Virial Halo Mass Function in the Planck Cosmology , 2021, The Astrophysical Journal.

[14]  M. Boylan-Kolchin,et al.  Uncertain times: the redshift–time relation from cosmology and stars , 2021, Monthly Notices of the Royal Astronomical Society.

[15]  Tristan L. Smith,et al.  Clustering and halo abundances in early dark energy cosmological models , 2020, Monthly Notices of the Royal Astronomical Society.

[16]  Jaime Fern'andez del R'io,et al.  Array programming with NumPy , 2020, Nature.

[17]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[18]  R. B. Barreiro,et al.  Planck 2018 results , 2018, Astronomy & Astrophysics.

[19]  Benjamin D. Johnson,et al.  A Redshift-independent Efficiency Model: Star Formation and Stellar Masses in Dark Matter Halos at z ≳ 4 , 2018, The Astrophysical Journal.

[20]  J. Silk,et al.  The most massive galaxies and black holes allowed by ΛCDM , 2016, 1609.04402.

[21]  L. Moscardini,et al.  The universality of the virial halo mass function and models for non-universality of other halo definitions , 2015, 1507.05627.

[22]  S. Murray HMF: Halo Mass Function calculator , 2014 .

[23]  Chris Power,et al.  HMFcalc: An online tool for calculating dark matter halo mass functions , 2013, Astron. Comput..

[24]  M. Stiavelli,et al.  Cosmic Variance and Its Effect on the Luminosity Function Determination in Deep High-z Surveys , 2007, 0712.0398.

[25]  G. Lake,et al.  Evolution of the mass function of dark matter haloes , 2003, astro-ph/0301270.

[26]  Ravi K. Sheth Giuseppe Tormen Large scale bias and the peak background split , 1999, astro-ph/9901122.

[27]  William H. Press,et al.  Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation , 1974 .

[28]  E. Salpeter The Luminosity function and stellar evolution , 1955 .