Fabrication and Characterization of Flexible and Tunable Plasmonic Nanostructures

We present a novel method to fabricate flexible and tunable plasmonic nanostructures based on combination of soft lithography and nanosphere lithography, and perform a comprehensive structural and optical characterization of these structures. Spherical latex particles are uniformly deposited on glass slides and used as molds for polydimethylsiloxane to obtain nanovoid structures. The diameter and depth of the nanostructures are controlled by the size of the latex particles. These surfaces are coated with a thin Ag layer for fabrication of uniform plasmonic nanostructures. Structural characterization of these surfaces is performed by SEM and AFM. Optical properties of these plasmonic nanostructures are evaluated via UV/Vis absorption spectroscopy, dark field microscopy, and surface–enhanced Raman spectroscopy (SERS). Position of the surface plasmon absorption depends on the diameter and depth of the nanostructures. SERS enhancement factor (measured up to 1.4 × 106) is dependent on the plasmon absorption wavelength and laser wavelength used in these experiments.

[1]  Chad A Mirkin,et al.  Nanostructures in biodiagnostics. , 2005, Chemical reviews.

[2]  John A. Rogers,et al.  Molded plasmonic crystals for detecting and spatially imaging surface bound species by surface-enhanced Raman scattering , 2009 .

[3]  P. Wallace,et al.  Surface-enhanced Raman scattering on gold quasi-3D nanostructure and 2D nanohole arrays , 2010, Nanotechnology.

[4]  Xiaohua Huang,et al.  Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. , 2006, Cancer letters.

[5]  Pierre-Michel Adam,et al.  Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays , 2005 .

[6]  Volker J. Sorger,et al.  Plasmon lasers: coherent light source at molecular scales , 2013 .

[7]  R. V. Van Duyne,et al.  Molecular Plasmonics , 2004, Science.

[8]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[9]  G. Schatz,et al.  Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions. , 2005, The journal of physical chemistry. B.

[10]  R. V. Van Duyne,et al.  Wavelength-scanned surface-enhanced Raman excitation spectroscopy. , 2005, The journal of physical chemistry. B.

[11]  Xiaohua Huang,et al.  Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. , 2005, Nano letters.

[12]  Ekmel Ozbay,et al.  'Fairy Chimney'-shaped tandem metamaterials as double resonance SERS substrates. , 2013, Small.

[13]  S. Maier,et al.  Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures , 2005 .

[14]  D. P. O'Neal,et al.  Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. , 2004, Cancer letters.

[15]  Alexandre G. Brolo,et al.  Nanohole-Enhanced Raman Scattering , 2004 .

[16]  Younan Xia,et al.  Chemical synthesis of novel plasmonic nanoparticles. , 2009, Annual review of physical chemistry.

[17]  E. Ozbay Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.

[18]  Charles J. Choi,et al.  Plasmonic nanogap-enhanced Raman scattering using a resonant nanodome array , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[19]  Chad A. Mirkin,et al.  One-Pot Colorimetric Differentiation of Polynucleotides with Single Base Imperfections Using Gold Nanoparticle Probes , 1998 .

[20]  J. Baumberg,et al.  Stretchable metal-elastomer nanovoids for tunable plasmons , 2009 .

[21]  Yasin Ekinci,et al.  Engineering metal adhesion layers that do not deteriorate plasmon resonances. , 2013, ACS nano.

[22]  J. Bain,et al.  Observation of geometrical resonance in optical throughput of very small aperture lasers associated with surface plasmons , 2007 .

[23]  J. Baumberg,et al.  Sculpted substrates for SERS. , 2006, Faraday discussions.

[24]  N. Ly,et al.  Integrated label-free protein detection and separation in real time using confined surface plasmon resonance imaging. , 2007, Analytical chemistry.

[25]  G. Frens Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions , 1973 .

[26]  Harry A. Atwater,et al.  Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides , 2003, Nature materials.

[27]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[28]  Bernhard Lamprecht,et al.  Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering , 2002 .

[29]  A. Geim,et al.  Nanofabricated media with negative permeability at visible frequencies , 2005, Nature.

[30]  Chih-Kung Lee,et al.  Experimental analysis of surface plasmon behavior in metallic circular slits , 2007 .

[31]  John A Rogers,et al.  Nanostructured plasmonic sensors. , 2008, Chemical reviews.

[32]  P. Jain,et al.  Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. , 2006, The journal of physical chemistry. B.

[33]  Jeremy J Baumberg,et al.  Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals. , 2005, Nano letters.

[34]  T. Ebbesen,et al.  Molecule–Surface Plasmon Interactions in Hole Arrays: Enhanced Absorption, Refractive Index Changes, and All‐Optical Switching , 2006 .

[35]  J. Chalmers,et al.  Handbook of vibrational spectroscopy , 2002 .

[36]  Faraday Discuss , 1985 .

[37]  R. V. Van Duyne,et al.  Localized surface plasmon resonance spectroscopy and sensing. , 2007, Annual review of physical chemistry.

[38]  N. Padture,et al.  Template-directed synthesis, characterization and electrical properties of Au–TiO2–Au heterojunction nanowires , 2007 .

[39]  I. Park,et al.  Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication. , 2007, Nano letters.

[40]  E. Hutter,et al.  Exploitation of Localized Surface Plasmon Resonance , 2004 .

[41]  R. Corn,et al.  Surface plasmon resonance imaging measurements of ultrathin organic films. , 2003, Annual review of physical chemistry.

[42]  Carsten Sönnichsen,et al.  A molecular ruler based on plasmon coupling of single gold and silver nanoparticles , 2005, Nature Biotechnology.

[43]  Luis M Liz-Marzán,et al.  Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[44]  C. Yeh,et al.  Sonochemical Synthesis of Well-Dispersed Gold Nanoparticles at the Ice Temperature , 2003 .

[45]  Christy L. Haynes,et al.  Plasmon-Sampled Surface-Enhanced Raman Excitation Spectroscopy † , 2003 .

[46]  Sang-Hyun Oh,et al.  Self-assembled plasmonic nanohole arrays. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[47]  P. Alivisatos The use of nanocrystals in biological detection , 2004, Nature Biotechnology.

[48]  Cheng Sun,et al.  Nanopin plasmonic resonator array and its optical properties. , 2007, Nano letters.

[49]  W. A. Murray,et al.  Plasmonic Materials , 2007 .

[50]  R. Nuzzo,et al.  Unconventional methods for forming nanopatterns , 2006 .

[51]  Jeremy J. Baumberg,et al.  Understanding Plasmons in Nanoscale Voids , 2007 .

[52]  Jeunghoon Lee,et al.  Nanofabrication of plasmonic structures. , 2009, Annual review of physical chemistry.

[53]  A. Haes,et al.  A unified view of propagating and localized surface plasmon resonance biosensors , 2004, Analytical and bioanalytical chemistry.

[54]  A Paul Alivisatos,et al.  Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRV restriction enzymes , 2006, Proceedings of the National Academy of Sciences.

[55]  C. Haynes,et al.  Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays † , 2003 .

[56]  Dong Qin,et al.  Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays. , 2008, Nano letters.

[57]  C. Haynes,et al.  Plasmonic Materials for Surface-Enhanced Sensing and Spectroscopy , 2005 .

[58]  J. Baumberg,et al.  Dressing plasmons in particle-in-cavity architectures , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[59]  John A. Rogers,et al.  Functional Nanostructured Plasmonic Materials , 2010, Advanced materials.

[60]  G. Frens Controlled nucleation for the regulation of the particle size in monodisperse gold solutions , 1973 .

[61]  J. Rogers,et al.  Recent progress in soft lithography , 2005 .

[62]  Philip N. Bartlett,et al.  Incident Wavelength Resolved Resonant SERS on Au Sphere Segment Void (SSV) Arrays , 2012 .

[63]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[64]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[65]  W. Steen Absorption and Scattering of Light by Small Particles , 1999 .

[66]  D. Qiu,et al.  Hole-Enhanced Raman Scattering , 2006, Applied spectroscopy.

[67]  R. V. Duyne,et al.  Nanosphere lithography fabricated plasmonic materials and their applications , 2006 .

[68]  Christy L. Haynes,et al.  Surface‐enhanced Raman sensors: early history and the development of sensors for quantitative biowarfare agent and glucose detection , 2005 .

[69]  Harry A Atwater,et al.  The promise of plasmonics , 2007, SIGD.

[70]  Bernhard Lamprecht,et al.  Optical properties of two interacting gold nanoparticles , 2003 .

[71]  Chad A Mirkin,et al.  Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. , 2007, Angewandte Chemie.

[72]  David R. Smith,et al.  Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles , 2003 .

[73]  P. Chu,et al.  Silver nanovoid arrays for surface-enhanced Raman scattering. , 2012, Langmuir : the ACS journal of surfaces and colloids.