A CMOS Micromachined Capacitive Tactile Sensor With High-Frequency Output

This paper describes the design and characterization of a CMOS-micromachined tactile sensing device that can be utilized for fingerprint recognition. The complete post micromachining steps are performed at die level without resorting to a wafer-level process, providing a low-cost solution for production. The micromechanical structure has an area of 200 mum by 200 mum and an initial sensing capacitance of 153 fF. An oscillator circuit is used to convert the pressure induced capacitance change to a shift in output frequency. The circuit has a measured initial frequency at 49.5 MHz under no applied force. The total frequency shift is 14 MHz with a corresponding mechanical displacement of 0.56 mum and a capacitance change of 63 fF, averaging a capacitive sensitivity of 222 kHz/fF. The measured spring constant is 923N/m, producing a force sensitivity of 27.1 kHz/muN

[1]  S. Timoshenko,et al.  THEORY OF PLATES AND SHELLS , 1959 .

[2]  J. Meindl,et al.  A monolithic capacitive pressure sensor with pulse-period output , 1980, 1980 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[3]  Andrzej Cichocki,et al.  Appllication of switched-capacitor self-oscillating circuits to the conversion of RLC parameters into a frequency or digital signal , 1990 .

[4]  Khalil Najafi,et al.  An ultraminiature CMOS pressure sensor for a multiplexed cardiovascular catheter , 1992 .

[5]  David A. Johns,et al.  Analog Integrated Circuit Design , 1996 .

[6]  K. Wise,et al.  A very high density bulk micromachined capacitive tactile imager , 1997, Proceedings of International Solid State Sensors and Actuators Conference (Transducers '97).

[7]  P. Rey,et al.  A high density capacitive pressure sensor array for fingerprint sensor application , 1997, Proceedings of International Solid State Sensors and Actuators Conference (Transducers '97).

[8]  Roberto Guerrieri,et al.  A fingerprint sensor based on the feedback capacitive sensing scheme , 1998, IEEE J. Solid State Circuits.

[9]  Gary K. Fedder,et al.  Mechanical proper-ty measurement of 0.5 mm CMOS microstructures , 1998 .

[10]  Wonchan Kim,et al.  A 600-dpi capacitive fingerprint sensor chip and image-synthesis technique , 1999, IEEE J. Solid State Circuits.

[11]  R. Howe,et al.  An integrated CMOS micromechanical resonator high-Q oscillator , 1999, IEEE J. Solid State Circuits.

[12]  Bernhard E. Boser,et al.  A three-axis micromachined accelerometer with a CMOS position-sense interface and digital offset-trim electronics , 1999, IEEE J. Solid State Circuits.

[13]  S. Senturia Microsystem Design , 2000 .

[14]  S. Chatzandroulis,et al.  A miniature pressure system with a capacitive sensor and a passive telemetry link for use in implantable applications , 2000, Journal of Microelectromechanical Systems.

[15]  Satoshi Shigematsu,et al.  A novel semiconductor capacitive sensor for a single-chip fingerprint sensor/identifier LSI , 2001 .

[16]  Satoshi Shigematsu,et al.  MEMS fingerprint sensor immune to various finger surface conditions , 2003 .

[17]  G. Fedder,et al.  Position control of parallel-plate microactuators for probe-based data storage , 2004, Journal of Microelectromechanical Systems.

[18]  B. Courtois,et al.  A sweeping mode integrated fingerprint sensor with 256 tactile microbeams , 2004, Journal of Microelectromechanical Systems.

[19]  Sheng-Hsiang Tseng,et al.  A Highly Sensitive CMOS-MEMS Capacitive Tactile Sensor , 2006, 19th IEEE International Conference on Micro Electro Mechanical Systems.