A Class of Multidimensional Latent Class IRT Models for Ordinal Polytomous Item Responses
暂无分享,去创建一个
[1] Carl P. M. Rijkes,et al. Loglinear multidimensional IRT models for polytomously scored items , 1988 .
[2] D. Andrich. Rating Scale Analysis , 1999 .
[3] M. R. Novick,et al. Statistical Theories of Mental Test Scores. , 1971 .
[4] G. Huston. The Hospital Anxiety and Depression Scale. , 1987, The Journal of rheumatology.
[5] Svend Kreiner,et al. Testing unidimensionality in polytomous Rasch models , 2002 .
[6] Matthias von Davier,et al. Polytomous Mixed Rasch Models , 1995 .
[7] Michael L. Nering,et al. Handbook of Polytomous Item Response Theory Models , 2010 .
[8] L. A. Goodman. Exploratory latent structure analysis using both identifiable and unidentifiable models , 1974 .
[9] B. Qaqish,et al. Multivariate logistic models , 2006 .
[10] I. W. Molenaar,et al. A multidimensional item response model: Constrained latent class analysis using the gibbs sampler and posterior predictive checks , 1997 .
[11] G. Masters. A rasch model for partial credit scoring , 1982 .
[12] Matthias von Davier,et al. COMPARISON OF MULTIDIMENSIONAL ITEM RESPONSE MODELS: MULTIVARIATE NORMAL ABILITY DISTRIBUTIONS VERSUS MULTIVARIATE POLYTOMOUS ABILITY DISTRIBUTIONS , 2008 .
[13] Fumiko Samejima,et al. EVALUATION OF MATHEMATICAL MODELS FOR ORDERED POLYCHOTOMOUS RESPONSES , 1996 .
[14] G. Rasch. On General Laws and the Meaning of Measurement in Psychology , 1961 .
[15] H. Akaike,et al. Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .
[16] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[17] G. Tutz. Sequential item response models with an ordered response , 1990 .
[18] Alan Agresti,et al. Computing conditional maximum likelihood estimates for generalized Rasch models using simple loglinear models with diagonals parameters , 1993 .
[19] Jinming Zhang,et al. COMPARISON OF UNIDIMENSIONAL AND MULTIDIMENSIONAL APPROACHES TO IRT PARAMETER ESTIMATION , 2004 .
[20] Francesco Bartolucci,et al. A class of multidimensional IRT models for testing unidimensionality and clustering items , 2007 .
[21] Francesco Bartolucci,et al. MultiLCIRT: An R package for multidimensional latent class item response models , 2012, Comput. Stat. Data Anal..
[22] Jürgen Rost,et al. A logistic mixture distribution model for polychotomous item responses , 1991 .
[23] Matthias von Davier,et al. Multivariate and Mixture Distribution Rasch Models , 2007 .
[24] F. Samejima. Estimation of latent ability using a response pattern of graded scores , 1968 .
[25] Matthias von Davier,et al. A general diagnostic model applied to language testing data. , 2008, The British journal of mathematical and statistical psychology.
[26] R. Hambleton,et al. Item Response Theory , 1984, The History of Educational Measurement.
[27] Eiji Muraki,et al. Fitting a Polytomous Item Response Model to Likert-Type Data , 1990 .
[28] D. Andrich. A rating formulation for ordered response categories , 1978 .
[29] Magnus Stenbeck,et al. Are Likert scales unidimensional , 1987 .
[30] P. Boeck,et al. Explanatory item response models : a generalized linear and nonlinear approach , 2004 .
[31] Neil Henry. Latent structure analysis , 1969 .
[32] E. Muraki. A GENERALIZED PARTIAL CREDIT MODEL: APPLICATION OF AN EM ALGORITHM , 1992 .
[33] Fritz Drasgow,et al. Distinguishing Among Paranletric item Response Models for Polychotomous Ordered Data , 1994 .
[34] Richard Goldstein. Latent Class and Discrete Latent Trait Models: Similarities and Differences , 1998 .
[35] A. Forcina,et al. Marginal regression models for the analysis of positive association of ordinal response variables , 2001 .
[36] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[37] Jeroen K. Vermunt,et al. The Use of Restricted Latent Class Models for Defining and Testing Nonparametric and Parametric Item Response Theory Models , 2001 .
[38] Anton K. Formann. Almost) Equivalence Between Conditional and Mixture Maximum Likelihood Estimates for Some Models of the Rasch Type , 2007 .
[39] Raymond J. Adams,et al. The Multidimensional Random Coefficients Multinomial Logit Model , 1997 .
[40] F. Krauss. Latent Structure Analysis , 1980 .
[41] Henk Kelderman,et al. Multidimensional Rasch Models for Partial-Credit Scoring , 1996 .
[42] B. Lindsay,et al. Semiparametric Estimation in the Rasch Model and Related Exponential Response Models, Including a Simple Latent Class Model for Item Analysis , 1991 .
[43] Nilly Mor. Eysenck Personality Questionnaire , 2010 .
[44] G. Masters,et al. A comparison of latent trait and latent class analyses of Likert-type data , 1985 .
[45] Paul F. Lazarsfeld,et al. Latent Structure Analysis. , 1969 .
[46] Alan Agresti,et al. Categorical Data Analysis , 2003 .
[47] A. Formann. Linear Logistic Latent Class Analysis for Polytomous Data , 1992 .
[48] M. Reckase. Multidimensional Item Response Theory , 2009 .
[49] H. van der Flier,et al. Latent trait latent class analysis of an Eysenck Personality Questionnaire. , 2003 .
[50] Georg Rasch,et al. Probabilistic Models for Some Intelligence and Attainment Tests , 1981, The SAGE Encyclopedia of Research Design.
[51] F. Samejima. A General Model for Free Response Data. , 1972 .
[52] Rolf Langeheine,et al. Latent Trait and Latent Class Models , 2013 .
[53] David Thissen,et al. A taxonomy of item response models , 1986 .
[54] Klaas Sijtsma,et al. On measurement properties of continuation ratio models , 2001 .
[55] Melvin R. Novick,et al. Some latent train models and their use in inferring an examinee's ability , 1966 .
[56] Fumiko Samejima,et al. Acceleration model in the heterogeneous case of the general graded response model , 1995 .
[57] E. Muraki. A Generalized Partial Credit Model , 1997 .
[58] L. Andries van der Ark,et al. Relationships and Properties of Polytomous Item Response Theory Models , 2001 .
[59] Francis Tuerlinckx,et al. A nonlinear mixed model framework for item response theory. , 2003, Psychological methods.
[60] R. Hambleton,et al. Handbook of Modern Item Response Theory , 1997 .