A Class of Multidimensional Latent Class IRT Models for Ordinal Polytomous Item Responses

We propose a class of multidimensional Item Response Theory models for polytomously-scored items with ordinal response categories. This class extends an existing class of multidimensional models for dichotomously-scored items in which the latent abilities are represented by a random vector assumed to have a discrete distribution, with support points corresponding to different latent classes in the population. In the proposed approach, we allow for different parameterizations for the conditional distribution of the response variables given the latent traits, which depend on the type of link function and the constraints imposed on the item parameters. Moreover, we suggest a strategy for model selection that is based on a series of steps consisting of selecting specific features, such as the dimension of the model (number of latent traits), the number of latent classes, and the specific parameterization. In order to illustrate the proposed approach, we analyze a dataset from a study on anxiety and depression on a sample of oncological patients.

[1]  Carl P. M. Rijkes,et al.  Loglinear multidimensional IRT models for polytomously scored items , 1988 .

[2]  D. Andrich Rating Scale Analysis , 1999 .

[3]  M. R. Novick,et al.  Statistical Theories of Mental Test Scores. , 1971 .

[4]  G. Huston The Hospital Anxiety and Depression Scale. , 1987, The Journal of rheumatology.

[5]  Svend Kreiner,et al.  Testing unidimensionality in polytomous Rasch models , 2002 .

[6]  Matthias von Davier,et al.  Polytomous Mixed Rasch Models , 1995 .

[7]  Michael L. Nering,et al.  Handbook of Polytomous Item Response Theory Models , 2010 .

[8]  L. A. Goodman Exploratory latent structure analysis using both identifiable and unidentifiable models , 1974 .

[9]  B. Qaqish,et al.  Multivariate logistic models , 2006 .

[10]  I. W. Molenaar,et al.  A multidimensional item response model: Constrained latent class analysis using the gibbs sampler and posterior predictive checks , 1997 .

[11]  G. Masters A rasch model for partial credit scoring , 1982 .

[12]  Matthias von Davier,et al.  COMPARISON OF MULTIDIMENSIONAL ITEM RESPONSE MODELS: MULTIVARIATE NORMAL ABILITY DISTRIBUTIONS VERSUS MULTIVARIATE POLYTOMOUS ABILITY DISTRIBUTIONS , 2008 .

[13]  Fumiko Samejima,et al.  EVALUATION OF MATHEMATICAL MODELS FOR ORDERED POLYCHOTOMOUS RESPONSES , 1996 .

[14]  G. Rasch On General Laws and the Meaning of Measurement in Psychology , 1961 .

[15]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[16]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[17]  G. Tutz Sequential item response models with an ordered response , 1990 .

[18]  Alan Agresti,et al.  Computing conditional maximum likelihood estimates for generalized Rasch models using simple loglinear models with diagonals parameters , 1993 .

[19]  Jinming Zhang,et al.  COMPARISON OF UNIDIMENSIONAL AND MULTIDIMENSIONAL APPROACHES TO IRT PARAMETER ESTIMATION , 2004 .

[20]  Francesco Bartolucci,et al.  A class of multidimensional IRT models for testing unidimensionality and clustering items , 2007 .

[21]  Francesco Bartolucci,et al.  MultiLCIRT: An R package for multidimensional latent class item response models , 2012, Comput. Stat. Data Anal..

[22]  Jürgen Rost,et al.  A logistic mixture distribution model for polychotomous item responses , 1991 .

[23]  Matthias von Davier,et al.  Multivariate and Mixture Distribution Rasch Models , 2007 .

[24]  F. Samejima Estimation of latent ability using a response pattern of graded scores , 1968 .

[25]  Matthias von Davier,et al.  A general diagnostic model applied to language testing data. , 2008, The British journal of mathematical and statistical psychology.

[26]  R. Hambleton,et al.  Item Response Theory , 1984, The History of Educational Measurement.

[27]  Eiji Muraki,et al.  Fitting a Polytomous Item Response Model to Likert-Type Data , 1990 .

[28]  D. Andrich A rating formulation for ordered response categories , 1978 .

[29]  Magnus Stenbeck,et al.  Are Likert scales unidimensional , 1987 .

[30]  P. Boeck,et al.  Explanatory item response models : a generalized linear and nonlinear approach , 2004 .

[31]  Neil Henry Latent structure analysis , 1969 .

[32]  E. Muraki A GENERALIZED PARTIAL CREDIT MODEL: APPLICATION OF AN EM ALGORITHM , 1992 .

[33]  Fritz Drasgow,et al.  Distinguishing Among Paranletric item Response Models for Polychotomous Ordered Data , 1994 .

[34]  Richard Goldstein Latent Class and Discrete Latent Trait Models: Similarities and Differences , 1998 .

[35]  A. Forcina,et al.  Marginal regression models for the analysis of positive association of ordinal response variables , 2001 .

[36]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[37]  Jeroen K. Vermunt,et al.  The Use of Restricted Latent Class Models for Defining and Testing Nonparametric and Parametric Item Response Theory Models , 2001 .

[38]  Anton K. Formann Almost) Equivalence Between Conditional and Mixture Maximum Likelihood Estimates for Some Models of the Rasch Type , 2007 .

[39]  Raymond J. Adams,et al.  The Multidimensional Random Coefficients Multinomial Logit Model , 1997 .

[40]  F. Krauss Latent Structure Analysis , 1980 .

[41]  Henk Kelderman,et al.  Multidimensional Rasch Models for Partial-Credit Scoring , 1996 .

[42]  B. Lindsay,et al.  Semiparametric Estimation in the Rasch Model and Related Exponential Response Models, Including a Simple Latent Class Model for Item Analysis , 1991 .

[43]  Nilly Mor Eysenck Personality Questionnaire , 2010 .

[44]  G. Masters,et al.  A comparison of latent trait and latent class analyses of Likert-type data , 1985 .

[45]  Paul F. Lazarsfeld,et al.  Latent Structure Analysis. , 1969 .

[46]  Alan Agresti,et al.  Categorical Data Analysis , 2003 .

[47]  A. Formann Linear Logistic Latent Class Analysis for Polytomous Data , 1992 .

[48]  M. Reckase Multidimensional Item Response Theory , 2009 .

[49]  H. van der Flier,et al.  Latent trait latent class analysis of an Eysenck Personality Questionnaire. , 2003 .

[50]  Georg Rasch,et al.  Probabilistic Models for Some Intelligence and Attainment Tests , 1981, The SAGE Encyclopedia of Research Design.

[51]  F. Samejima A General Model for Free Response Data. , 1972 .

[52]  Rolf Langeheine,et al.  Latent Trait and Latent Class Models , 2013 .

[53]  David Thissen,et al.  A taxonomy of item response models , 1986 .

[54]  Klaas Sijtsma,et al.  On measurement properties of continuation ratio models , 2001 .

[55]  Melvin R. Novick,et al.  Some latent train models and their use in inferring an examinee's ability , 1966 .

[56]  Fumiko Samejima,et al.  Acceleration model in the heterogeneous case of the general graded response model , 1995 .

[57]  E. Muraki A Generalized Partial Credit Model , 1997 .

[58]  L. Andries van der Ark,et al.  Relationships and Properties of Polytomous Item Response Theory Models , 2001 .

[59]  Francis Tuerlinckx,et al.  A nonlinear mixed model framework for item response theory. , 2003, Psychological methods.

[60]  R. Hambleton,et al.  Handbook of Modern Item Response Theory , 1997 .