Selection of DNA binding sites by regulatory proteins. Statistical-mechanical theory and application to operators and promoters.

[1]  D. Crothers,et al.  The DNA binding domain and bending angle of E. coli CAP protein , 1986, Cell.

[2]  S. LeGrice,et al.  Enhancement of bacterial gene expression by insertion elements or by mutation in a CAP-cAMP binding site. , 1986, Journal of molecular biology.

[3]  A. Revzin,et al.  Solutions of RNA polymerase plus linear wild type E. coli lac DNA fragments contain a mixture of stable P1 and P2 promoter complexes. , 1986, Nucleic acids research.

[4]  T. D. Schneider,et al.  Information content of binding sites on nucleotide sequences. , 1986, Journal of molecular biology.

[5]  S. Hahn,et al.  Transcription of Escherichia coli ara in vitro. The cyclic AMP receptor protein requirement for PBAD induction that depends on the presence and orientation of the araO2 site. , 1986, Journal of molecular biology.

[6]  Martin E. Mulligan,et al.  Analysis of the occurrence of promoter-sites in DNA , 1986, Nucleic Acids Res..

[7]  T Platt,et al.  Transcription termination and the regulation of gene expression. , 1986, Annual review of biochemistry.

[8]  M C Mossing,et al.  Thermodynamic origins of specificity in the lac repressor-operator interaction. Adaptability in the recognition of mutant operator sites. , 1985, Journal of molecular biology.

[9]  M. Waterman,et al.  Rigorous pattern-recognition methods for DNA sequences. Analysis of promoter sequences from Escherichia coli. , 1985, Journal of molecular biology.

[10]  Robert T. Sauer,et al.  Lambda repressor mutations that increase the affinity and specificity of operator binding , 1985, Cell.

[11]  Atsushi Nakazawa,et al.  Positive regulation of the colicin E1 gene by cyclic AMP and cyclic AMP receptor protein , 1985, Nucleic Acids Res..

[12]  A. Lamond The control of stable RNA synthesis in bacteria , 1985 .

[13]  H. Aiba Transcription of the Escherichia coli adenylate cyclase gene is negatively regulated by cAMP-cAMP receptor protein. , 1985, The Journal of biological chemistry.

[14]  W. McClure,et al.  Mechanism and control of transcription initiation in prokaryotes. , 1985, Annual review of biochemistry.

[15]  W. McClure,et al.  Mechanism of CRP-cAMP activation of lac operon transcription initiation activation of the P1 promoter. , 1984, Journal of molecular biology.

[16]  N. Ulyanov,et al.  Sequence-dependent anisotropic flexibility of B-DNA. A conformational study. , 1984, Journal of biomolecular structure & dynamics.

[17]  H. Drew,et al.  DNA structural variations in the E. coli tyrT promoter , 1984, Cell.

[18]  H. Buc,et al.  Cyclic AMP receptor protein: role in transcription activation. , 1984, Science.

[19]  M. Ehrenberg,et al.  Costs of accuracy determined by a maximal growth rate constraint , 1984, Quarterly Reviews of Biophysics.

[20]  Robert Entriken,et al.  Escherichia coli promoter sequences predict in vitro RNA polymerase selectivity , 1984, Nucleic Acids Res..

[21]  R. Staden,et al.  Computer methods to locate signals in nucleic acid sequences , 1984, Nucleic Acids Res..

[22]  P. V. von Hippel,et al.  Protein-nucleic acid interactions in transcription: a molecular analysis. , 1984, Annual review of biochemistry.

[23]  H. Buc,et al.  On the different binding affinities of CRP at the lac, gal and malT promoter regions. , 1983, Nucleic acids research.

[24]  S. Levy,et al.  Transcription of plasmid DNA in Escherichia coli minicells. , 1983, Plasmid.

[25]  R. Dickerson,et al.  Base sequence and helix structure variation in B and A DNA. , 1983, Journal of molecular biology.

[26]  R. Harr,et al.  Search algorithm for pattern match analysis of nucleic acid sequences. , 1983, Nucleic acids research.

[27]  D. K. Hawley,et al.  Compilation and analysis of Escherichia coli promoter DNA sequences. , 1983, Nucleic acids research.

[28]  H R Drew,et al.  Reversible bending and helix geometry in a B-DNA dodecamer: CGCGAATTBrCGCG. , 1982, The Journal of biological chemistry.

[29]  B. Matthews,et al.  The molecular basis of DNA–protein recognition inferred from the structure of cro repressor , 1982, Nature.

[30]  The catabolite-sensitive promoter for the chloramphenicol acetyl transferase gene is preceded by two binding sites for the catabolite gene activator protein , 1982, Journal of bacteriology.

[31]  Keith R. Yamamoto,et al.  Biological Regulation and Development , 1982, Springer US.

[32]  G. Stormo,et al.  Translational initiation in prokaryotes. , 1981, Annual review of microbiology.

[33]  Regulatory aspects of the cyclic AMP receptor protein in Escherichia coli K-12. , 1980, Biochemical and biophysical research communications.

[34]  A. Revzin,et al.  Intracellular location of catabolite activator protein of Escherichia coli , 1980, Journal of bacteriology.

[35]  M. Takahashi,et al.  Non-specific interactions of CRP from E. coli with native and denatured DNAs: control of binding by cAMP and cGMP and by cation concentration. , 1979, Nucleic acids research.

[36]  A. Revzin,et al.  Cooperative binding to DNA of catabolite activator protein of Escherichia coli. , 1979, Biochemistry.

[37]  O. Berg A model for the statistical fluctuations of protein numbers in a microbial population. , 1978, Journal of theoretical biology.

[38]  H. Bremer,et al.  Regulatory state of ribosomal genes and physiological changes in the concentration of free ribonucleic acid polymerase in Escherichia coli. , 1975, The Biochemical journal.

[39]  Syr-yaung Lin,et al.  The general affinity of lac repressor for E. coli DNA: Implications for gene regulation in procaryotes and eucaryotes , 1975, Cell.

[40]  S. Bourgeois,et al.  lac Repressor-operator interaction. IX. The binding of lac repressor to operators containing Oc mutations. , 1974, Journal of molecular biology.

[41]  R. Gurney Introduction to statistical mechanics , 1968 .