Analyzing Walksat on Random Formulas

Let Φ be a uniformly distributed random k-SAT formula with n variables and m clauses. We prove that the Walksat algorithm from Papadimitriou (FOCS 1991)/Schoning (FOCS 1999) finds a satisfying assignment of Φ in polynomial time w.h.p. if m/n ≤ ρ · 2k/k for a certain constant ρ > 0. This is an improvement by a factor of Θ(k) over the best previous analysis of Walksat from Coja-Oghlan, Feige, Frieze, Krivelevich, Vilenchik (SODA 2009).

[1]  A. Coja-Oghlan A Better Algorithm for Random k-SAT , 2010, SIAM J. Comput..

[2]  Gábor Tardos,et al.  A constructive proof of the general lovász local lemma , 2009, JACM.

[3]  Amin Coja-Oghlan A Better Algorithm for Random k-SAT , 2009, ICALP.

[4]  Alan M. Frieze,et al.  On smoothed k-CNF formulas and the Walksat algorithm , 2009, SODA.

[5]  Robin A. Moser A constructive proof of the Lovász local lemma , 2008, STOC '09.

[6]  D. Achlioptas The Threshold for Random kSAT is 2 k ( ln 2 + o ( 1 ) ) , 2007 .

[7]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[8]  Cristopher Moore,et al.  Random k-SAT: Two Moments Suffice to Cross a Sharp Threshold , 2003, SIAM J. Comput..

[9]  Lefteris M. Kirousis,et al.  The probabilistic analysis of a greedy satisfiability algorithm , 2002, Random Struct. Algorithms.

[10]  Michael Molloy,et al.  Cores in random hypergraphs and Boolean formulas , 2005, Random Struct. Algorithms.

[11]  Gregory B. Sorkin,et al.  IBM Research Report The Satisfiability Threshold of Random 3-SAT Is at Least 3.52 , 2003 .

[12]  Michael Alekhnovich,et al.  Linear upper bounds for random walk on small density random 3-CNFs , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[13]  Yuval Peres,et al.  The threshold for random k-SAT is 2k (ln 2 - O(k)) , 2003, STOC '03.

[14]  Rémi Monasson,et al.  A Study of Pure Random Walk on Random Satisfiability Problems with "Physical" Methods , 2003, SAT.

[15]  Dimitris Achlioptas,et al.  Lower bounds for random 3-SAT via differential equations , 2001, Theor. Comput. Sci..

[16]  U. Schöning A probabilistic algorithm for k-SAT and constraint satisfaction problems , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[17]  Alan M. Frieze,et al.  Analysis of Two Simple Heuristics on a Random Instance of k-SAT , 1996, J. Algorithms.

[18]  Bart Selman,et al.  Local search strategies for satisfiability testing , 1993, Cliques, Coloring, and Satisfiability.

[19]  Alan M. Frieze,et al.  On the satisfiability and maximum satisfiability of random 3-CNF formulas , 1993, SODA '93.

[20]  Bruce A. Reed,et al.  Mick gets some (the odds are on his side) (satisfiability) , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[21]  Hector J. Levesque,et al.  Hard and Easy Distributions of SAT Problems , 1992, AAAI.

[22]  C.H. Papadimitriou,et al.  On selecting a satisfying truth assignment , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[23]  Peter C. Cheeseman,et al.  Where the Really Hard Problems Are , 1991, IJCAI.

[24]  Ming-Te Chao,et al.  Probabilistic analysis of a generalization of the unit-clause literal selection heuristics for the k satisfiability problem , 1990, Inf. Sci..