Quantification of the clustering properties of nuclear states

[1]  Y. Suzuki Cluster and symplectic excitations in nuclei , 1986 .

[2]  R. Lovas,et al.  Quasielastic cluster knock-out reactions and the microscopic cluster model , 1985 .

[3]  R. Lovas On Fliessbach's approaches to direct reactions , 1985 .

[4]  G. Spitz,et al.  Orthogonalization of function spaces in the resonating group model , 1985 .

[5]  Walliser,et al.  Cluster picture of 7Li. , 1985, Physical review. C, Nuclear physics.

[6]  Yang Tang,et al.  Resonating-group-method calculation for the α-16O system with realistic oscillator frequencies , 1985 .

[7]  K. Langanke,et al.  Microscopic study of the α-14C molecular-dipole degree of freedom in the18O nucleus , 1984 .

[8]  K. F. Pál,et al.  Cluster transfer form factor and intercluster relative motion in the orthogonality-condition model , 1984 .

[9]  E. Schmid Theoretical description of few-cluster systems , 1984 .

[10]  H. Horiuchi Equivalent Local Potentials and Perey Factors for Various Kinds of Relative Wave Functions of RGM. II Quantitative Investigation of the Foundation of the Orthogonality Condition Model , 1984 .

[11]  A. Kruppa,et al.  Cluster model with breathing clusters: Dynamical distortion effects in Li6 , 1984 .

[12]  K. F. Pál,et al.  Generator-coordinate calculation of the potential overlap for the DWBA description of cluster transfer reactions , 1983 .

[13]  Y. C. Tang,et al.  Specific distortion effects in the d + α system and charge form factor of 6Li☆ , 1982 .

[14]  M. Orlowski,et al.  Importance of the three-body Pauli potential in three-cluster systems , 1982 .

[15]  M. Nagarajan,et al.  Pseudo-bound wavefunctions in the generator-coordinate method , 1982 .

[16]  B. Giraud,et al.  Variational approach to resonant states of many-particle systems , 1982 .

[17]  H. Friedrich Microscopic nucleus-nucleus potentials☆ , 1981 .

[18]  J. Erö,et al.  Contraction of the deuteron cluster in /sup 6/Li , 1981 .

[19]  H. Kanada,et al.  Study of Distortion Effects in the Elastic d-4He Scattering by Orthogonality Condition Model , 1980 .

[20]  J. Bergstrom 6Li electromagnetic form factors and phenomenological cluster models , 1979 .

[21]  Y. C. Tang,et al.  Resonating-group method for nuclear many-body problems , 1978 .

[22]  K. Hecht,et al.  Sp(6, R) symmetry and α-breakup amplitudes of giant E2 excitations in light nuclei , 1978 .

[23]  D. R. Thompson,et al.  Systematic investigation of scattering problems with the resonating-group method , 1977 .

[24]  S. Saitō Chapter II. \ Theory of Resonating Group Method and Generator Coordinate Method, and Orthogonality Condition Model , 1977 .

[25]  B. Buck,et al.  Local potential models for the scattering of complex nuclei , 1977 .

[26]  T. Fliessbach Antisymmetrization in the alpha-nucleus system , 1976 .

[27]  T. Fliessbach The reduced width amplitude in the reaction theory for composite particles , 1975 .

[28]  I. Towner,et al.  Alpha particle spectroscopic amplitudes in the j-j coupled shell model , 1974 .

[29]  C. Coste,et al.  Study of Deuteron-Cluster Deformation Using the Reaction 6 Li(d, tp) 4 He , 1974 .

[30]  A. Jain,et al.  Charge form factor and quadrupole moment of 6Li , 1970 .

[31]  H. Horiuchi Generator Coordinate Treatment of Composite Particle Reaction and Molecule-like Structures , 1970 .

[32]  K. Ikeda,et al.  The Systematic Structure-Change into the Molecule-like Structures in the Self-Conjugate 4n Nuclei , 1968 .

[33]  A. B. Volkov Equilibrium deformation calculations of the ground state energies of 1p shell nuclei , 1965 .

[34]  Y. C. Tang,et al.  Charge distribution of Li6 , 1963 .