Thirty Years of Computational Autopoiesis: A Review

Computational autopoiesisthe realization of autopoietic entities in computational mediaholds an important and distinctive role within the field of artificial life. Its earliest formulation by Francisco Varela, Humberto Maturana, and Ricardo Uribe was seminal in demonstrating the use of an artificial, computational medium to explore the most basic question of the abstract nature of living systemsover a decade in advance of the first Santa Fe Workshop on Artificial Life. The research program it originated has generated substantive demonstrations of progressively richer, lifelike phenomena. It has also sharply illuminated both conceptual and methodological problems in the field. This article provides an integrative overview of the sometimes disparate work in this area, and argues that computational autopoiesis continues to provide an effective framework for addressing key open problems in artificial life.

[1]  G. Fleischaker,et al.  Autopoiesis: the status of its system logic. , 1988, Bio Systems.

[2]  G. Fleischaker,et al.  Origins of life: An operational definition , 1990, Origins of life and evolution of the biosphere.

[3]  W. Fontana,et al.  “The arrival of the fittest”: Toward a theory of biological organization , 1994 .

[4]  Humberto R. Maturana,et al.  Cognition , 1999, Encyclopedia of GIS.

[5]  Barry McMullin Computational Autopoiesis: The Original Algorithm , 1997 .

[6]  Stuart A. Kauffman,et al.  The origins of order , 1993 .

[7]  H. Maturana,et al.  Autopoiesis: the organization of living systems, its characterization and a model. , 1974, Currents in modern biology.

[8]  B. McMullin Some Remarks on Autocatalysis and Autopoiesis , 1999 .

[9]  B. McMullin Remarks on Autocatalysis and Autopoiesis , 2000, Annals of the New York Academy of Sciences.

[10]  Thomas S. Ray,et al.  An Approach to the Synthesis of Life , 1991 .

[11]  F. Varela,et al.  Self-replicating micelles — A chemical version of a minimal autopoietic system , 1989, Origins of life and evolution of the biosphere.

[12]  Tibor Csendes,et al.  A SIMULATION STUDY ON THE CHEMOTON , 1984 .

[13]  Barry McMullin,et al.  Essay 6 Artificial Darwinism : The Very Idea ! ∗ , 1997 .

[14]  Chris Langton,et al.  Artificial Life , 2017, Encyclopedia of Machine Learning and Data Mining.

[15]  Martin Nilsson,et al.  Ansatz for Dynamical Hierarchies , 2002, Artificial Life.

[16]  L. Buss,et al.  The evolution of individuality , 1987 .

[17]  Steen Rasmussen,et al.  The coreworld: emergence and evolution of cooperative structures in a computational chemistry , 1990 .

[18]  H. Maturana,et al.  Autopoiesis and Cognition : The Realization of the Living (Boston Studies in the Philosophy of Scie , 1980 .

[19]  F. Varela Principles of biological autonomy , 1979 .

[20]  J. Letelier,et al.  Autopoietic and (M,R) systems. , 2003, Journal of theoretical biology.

[21]  John S. McCaskill,et al.  Evolving Reaction-Diffusion Ecosystems with Self-Assembling Structures in Thin Films , 1998, Artificial Life.

[22]  N. Ono,et al.  Selection of catalysts through cellular reproduction , 2002 .

[23]  Milan Zeleny,et al.  Autopoiesis, a Theory of Living Organizations , 1980 .

[24]  Takashi Ikegami,et al.  Model of Self-Replicating Cell Capable of Self-Maintenance , 1999, ECAL.

[25]  Milan Zeleny,et al.  SELF-ORGANIZATION OF LIVING SYSTEMS: A FORMAL MODEL OF AUTOPOIESIS , 1977 .

[26]  F. Varela,et al.  The early days of autopoiesis: Heinz and Chile , 1996 .

[27]  Barry McMullin,et al.  John von Neumann and the Evolutionary Growth of Complexity: Looking Backward, Looking Forward , 2000, Artificial Life.

[28]  T. Gánti Organization of chemical reactions into dividing and metabolizing units: the chemotons. , 1975, Bio Systems.

[29]  W. Pitts,et al.  Anatomy and Physiology of Vision in the Frog (Rana pipiens) , 1960, The Journal of general physiology.

[30]  T. Gánti Biogenesis itself. , 1997, Journal of theoretical biology.

[31]  T. Ikegami,et al.  Self-maintenance and self-reproduction in an abstract cell model. , 2000, Journal of theoretical biology.

[32]  Milan Zeleny,et al.  Autopoiesis, Dissipative Structures, And Spontaneous Social Orders , 1980 .

[33]  F. Roush Autopoiesis: A theory of living organization : M. Zeleny, New York: North-Holland, 1981 , 1984 .

[34]  Takashi Ikegami,et al.  Artificial Chemistry: Computational Studies on the Emergence of Self-Reproducing Units , 2001, ECAL.

[35]  Barry McMullin,et al.  Rediscovering Computational Autopoiesis , 1997 .

[36]  Martin Nilsson,et al.  Defense of the Ansatz for Dynamical Hierarchies , 2001, Artificial Life.

[37]  Barry McMullin,et al.  Towards the Implementation of Evolving Autopoietic Artificial Agents , 2001, ECAL.

[38]  Barry McMullin,et al.  John von Neumann and the Evolutionary Growth of Complexity: Looking Backwards, Looking Forwards.. , 2004 .

[39]  Tatsuya Nomura Formal Description of Autopoiesis Based on the Theory of Category , 2001, ECAL.

[40]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[41]  H. Maturana,et al.  Autopoiesis and Cognition , 1980 .

[42]  Pier Luigi Luisi Defining the transition to life: Self-replicating bounded structures and chemical autopoiesis , 1993 .

[43]  Takashi Ikegami,et al.  Cellular Evolution in a 3D Lattice Artificial Chemistry , 2003, ECAL.

[44]  Barry McMullin,et al.  SCL: An Artificial Chemistry in Swarm , 1997 .

[45]  H. Maturana,et al.  The Tree of Knowledge: The Biological Roots of Human Understanding , 2007 .

[46]  L W Buss,et al.  What would be conserved if "the tape were played twice"? , 1994, Proceedings of the National Academy of Sciences of the United States of America.