Phase-field simulations of vortex chirality manipulation in ferroelectric thin films

[1]  Sergei V. Kalinin,et al.  Flexosensitive polarization vortices in thin ferroelectric films , 2021, Physical Review B.

[2]  Meilin Liu,et al.  Domain patterns and super-elasticity of freestanding BiFeO3 membranes via phase-field simulations , 2021 .

[3]  D. Evans,et al.  Flexo-Elastic Control Factors of Domain Morphology in Core-Shell Ferroelectric Nanoparticles: Soft and Rigid Shells , 2020, SSRN Electronic Journal.

[4]  Long-qing Chen,et al.  Quasi-one-dimensional metallic conduction channels in exotic ferroelectric topological defects , 2020, Nature Communications.

[5]  Houbing Huang,et al.  Phase-field simulations of surface charge-induced ferroelectric vortex , 2021, Journal of Physics D: Applied Physics.

[6]  S. Nakhmanson,et al.  Controllable skyrmion chirality in ferroelectrics , 2020, Scientific Reports.

[7]  Long-Qing Chen,et al.  Stability and Dynamics of Skyrmions in Ultrathin Magnetic Nanodisks Under Strain , 2020, Acta Materialia.

[8]  V. Garcia,et al.  Electric and antiferromagnetic chiral textures at multiferroic domain walls , 2019, Nature Materials.

[9]  Yue Zheng,et al.  Mechanical writing of in-plane ferroelectric vortices by tip-force and their coupled chirality , 2019, Journal of physics. Condensed matter : an Institute of Physics journal.

[10]  C. Nan,et al.  Acidic aqueous solution switching of magnetism in BiFeO3/La1 − xSrxMnO3 heterostructures , 2019, Journal of Applied Physics.

[11]  Jeongyong Kim,et al.  Artificial creation and separation of a single vortex–antivortex pair in a ferroelectric flatland , 2019, npj Quantum Materials.

[12]  Le Van Lich,et al.  Deterministic Switching of Polarization Vortices in Compositionally Graded Ferroelectrics Using a Mechanical Field , 2019, Physical Review Applied.

[13]  R. Ramesh,et al.  Observation of room-temperature polar skyrmions , 2019, Nature.

[14]  Hasnain Mehdi Jafri,et al.  Phase-field simulations of surface charge-induced polarization switching , 2019, Applied Physics Letters.

[15]  C. Nan,et al.  Switching the chirality of a magnetic vortex deterministically with an electric field , 2018, Materials Research Letters.

[16]  M. Zou,et al.  Rhombohedral-Orthorhombic Ferroelectric Morphotropic Phase Boundary Associated with a Polar Vortex in BiFeO3 Films. , 2018, ACS nano.

[17]  Takashi Eshita,et al.  Development of highly reliable ferroelectric random access memory and its Internet of Things applications , 2018, Japanese Journal of Applied Physics.

[18]  Qinghua Zhang,et al.  Water printing of ferroelectric polarization , 2018, Nature Communications.

[19]  Sergei V. Kalinin,et al.  Electronic switching by metastable polarization states in BiFeO3 thin films , 2018, Physical Review Materials.

[20]  T. Tatsuma,et al.  Chiral Plasmonic Nanostructures Fabricated by Circularly Polarized Light. , 2018, Nano letters.

[21]  Yue Zheng,et al.  Mechanical switching in ferroelectrics by shear stress and its implications on charged domain wall generation and vortex memory devices , 2018 .

[22]  Christopher T. Nelson,et al.  Emergent chirality in the electric polarization texture of titanate superlattices , 2018, Proceedings of the National Academy of Sciences.

[23]  Sergei V. Kalinin,et al.  Quantification of flexoelectricity in PbTiO3/SrTiO3 superlattice polar vortices using machine learning and phase-field modeling , 2017, Nature Communications.

[24]  Le Van Lich,et al.  Switching the chirality of a ferroelectric vortex in designed nanostructures by a homogeneous electric field , 2017 .

[25]  M. Raschke,et al.  Phase coexistence and electric-field control of toroidal order in oxide superlattices. , 2017, Nature materials.

[26]  S. Cheong,et al.  Rewritable ferroelectric vortex pairs in BiFeO3 , 2017 .

[27]  R. Hertel,et al.  Non-Ising and chiral ferroelectric domain walls revealed by nonlinear optical microscopy , 2017, Nature Communications.

[28]  Sergei V. Kalinin,et al.  Tuning the polar states of ferroelectric films via surface charges and flexoelectricity , 2017, 1704.00136.

[29]  A. Locatelli,et al.  Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. , 2016, Nature nanotechnology.

[30]  Sergei V. Kalinin,et al.  Giant elastic tunability in strained BiFeO3 near an electrically induced phase transition , 2015, Nature Communications.

[31]  Zhifeng Ren,et al.  Multiferroic materials and magnetoelectric physics: symmetry, entanglement, excitation, and topology , 2015, 1512.05372.

[32]  S. Pennycook,et al.  Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films , 2015, Science.

[33]  S. Cheong,et al.  Topological defects as relics of emergent continuous symmetry and Higgs condensation of disorder in ferroelectrics , 2014, Nature Physics.

[34]  V. Gopalan,et al.  Flexoelectricity and Ferroelectric Domain Wall Structures: Phase-Field Modeling and DFT Calculations , 2014 .

[35]  P. Fischer,et al.  Dynamic switching of the spin circulation in tapered magnetic nanodisks. , 2013, Nature nanotechnology.

[36]  Sergei V. Kalinin,et al.  Domain wall geometry controls conduction in ferroelectrics. , 2012, Nano letters.

[37]  A. Tagantsev,et al.  Bichiral structure of ferroelectric domain walls driven by flexoelectricity , 2012, 1207.5507.

[38]  Xiang Zhang,et al.  Photoinduced handedness switching in terahertz chiral metamolecules , 2012, Nature Communications.

[39]  V. Gopalan,et al.  Interfacial polarization and pyroelectricity in antiferrodistortive structures induced by a flexoelectric effect and rotostriction , 2011, 1108.0019.

[40]  Sergei V. Kalinin,et al.  Exploring topological defects in epitaxial BiFeO3 thin films. , 2011, ACS nano.

[41]  E. Hendry,et al.  Ultrasensitive detection and characterization of biomolecules using superchiral fields. , 2010, Nature nanotechnology.

[42]  Ho Won Jang,et al.  Ferroelastic switching for nanoscale non-volatile magnetoelectric devices. , 2010, Nature materials.

[43]  Sergei V. Kalinin,et al.  Deterministic control of ferroelastic switching in multiferroic materials. , 2009, Nature nanotechnology.

[44]  M. Wegener,et al.  Gold Helix Photonic Metamaterial as Broadband Circular Polarizer , 2009, Science.

[45]  Marc Kamlah,et al.  Intrinsic switching of polarization vortex in ferroelectric nanotubes , 2009 .

[46]  Yue Zheng,et al.  Thermodynamic modeling of critical properties of ferroelectric superlattices in nano-scale , 2009 .

[47]  I. Naumov,et al.  Cooperative response of Pb(ZrTi)O3 nanoparticles to curled electric fields. , 2008, Physical review letters.

[48]  H. Ohashi,et al.  Right handed or left handed? Forbidden x-ray diffraction reveals chirality. , 2008, Physical review letters.

[49]  T. Zhao,et al.  Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature , 2006, Nature materials.

[50]  L. Bellaiche,et al.  Unusual phase transitions in ferroelectric nanodisks and nanorods , 2004, Nature.

[51]  Tong-Yi Zhang,et al.  Phase-field simulations of ferroelectric/ferroelastic polarization switching , 2004 .

[52]  R. Wiesendanger,et al.  Direct Observation of Internal Spin Structure of Magnetic Vortex Cores , 2002, Science.

[53]  L. Chen,et al.  Phase-field model of domain structures in ferroelectric thin films , 2001 .

[54]  M. Takagi,et al.  Domain walls in ferroelectrics , 1993 .

[55]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[56]  J. Fousek,et al.  The Orientation of Domain Walls in Twinned Ferroelectric Crystals , 1969 .

[57]  R. Bell,et al.  Dielectric Constant in Paraelectric Perovskites , 1964 .