Diametrically Opposed Carbenes on an α‐Cyclodextrin: Synthesis, Characterization of Organometallic Complexes and Suzuki–Miyaura Coupling in Ethanol and in Water

Two carbene-based ligands have been attached to perbenzylated and permethylated cyclodextrins. Their palladium complexes were synthesized, characterized and used as catalysts in Suzuki–Miyaura coupling reactions both in ethanol and water.

[1]  Rafael Gramage‐Doria,et al.  Metallated cavitands (calixarenes, resorcinarenes, cyclodextrins) with internal coordination sites , 2013 .

[2]  G. Prencipe,et al.  An "against the rules" double bank shot with diisobutylaluminum hydride to allow triple functionalization of α-cyclodextrin. , 2013, Angewandte Chemie.

[3]  S. Menuel,et al.  Cyclodextrin-phosphane possessing a guest-tunable conformation for aqueous rhodium-catalyzed hydroformylation. , 2012, Chemical communications.

[4]  M. Sollogoub,et al.  An N-heterocyclic carbene ligand based on a β-cyclodextrin–imidazolium salt: synthesis, characterization of organometallic complexes and Suzuki coupling , 2011 .

[5]  E. Zaborova,et al.  Cavitand supported tetraphosphine: cyclodextrin offers a useful platform for Suzuki-Miyaura cross-coupling. , 2011, Chemical communications.

[6]  C. Slomianny,et al.  Synthesis, Rhodium Complexes and Catalytic Applications of a New Water‐Soluble Triphenylphosphane‐Modified β‐Cyclodextrin , 2011 .

[7]  É. Deunf,et al.  Synthesis and Electrochemical Study of an Original Copper(II)‐Capped Salen–Cyclodextrin Complex , 2010 .

[8]  E. Monflier,et al.  New phosphane based on a beta-cyclodextrin, exhibiting a solvent-tunable conformation, and its catalytic properties. , 2010, Chemistry.

[9]  S. Fukuzawa,et al.  Synthesis of Dichlorobis(1,4-dimesityl-1H-1,2,3-triazol-5-ylidene)palladium [PdCl2(TMes)2] and Its Application to Suzuki–Miyaura Coupling Reaction , 2010 .

[10]  E. Zaborova,et al.  μ-Waves avoid large excesses of diisobutylaluminium-hydride (DIBAL-H) in the debenzylation of perbenzylated α-cyclodextrin , 2010 .

[11]  Ming Yang,et al.  Diisobutylaluminium Hydride (DIBAL-H) Promoted Secondary Rim Regioselective Demethylations of Permethylated β-Cyclodextrin: A Mechanistic Proposal , 2010 .

[12]  J. Dutasta,et al.  Hemicryptophane–oxidovanadium(V) complexes: Lead of a new class of efficient supramolecular catalysts , 2009 .

[13]  J. Mata,et al.  Complexes with poly(N-heterocyclic carbene) ligands: structural features and catalytic applications. , 2009, Chemical reviews.

[14]  M. Albrecht,et al.  1,2,3-Triazolylidenes as versatile abnormal carbene ligands for late transition metals. , 2008, Journal of the American Chemical Society.

[15]  F. Perret,et al.  Control of the regioselectivity for new fluorinated amphiphilic cyclodextrins: synthesis of di- and tetra(6-deoxy-6-alkylthio)- and 6-(perfluoroalkypropanethio)-alpha-cyclodextrin derivatives. , 2008, The Journal of organic chemistry.

[16]  M. Sollogoub,et al.  Multiple homo- and hetero-functionalizations of alpha-cyclodextrin through oriented deprotections. , 2008, The Journal of organic chemistry.

[17]  M. Sollogoub,et al.  Chemical Clockwise Tridifferentiation of α‐ and β‐Cyclodextrins: Bascule‐Bridge or Deoxy‐Sugars Strategies , 2007 .

[18]  L. Toupet,et al.  Synthesis and properties of TRANSDIP, a rigid chelator built upon a cyclodextrin cavity: is TRANSDIP an authentic trans-spanning ligand? , 2007, Chemistry.

[19]  M. Font‐Bardia,et al.  Imidazolium−Calix[4]arene Molecular Frameworks: Bis(N-heterocyclic carbenes) as Bidentate Ligands† , 2007 .

[20]  L. Toupet,et al.  alpha-TEPHOS: a cyclodextrin-derived tetraphosphine for multiple metal binding. , 2007, Dalton transactions.

[21]  H. Lee,et al.  Nonchelate and Chelate Complexes of Palladium(II) with N-Heterocyclic Carbene Ligands of Amido Functionality , 2007 .

[22]  M. Sollogoub,et al.  Expeditious selective synthesis of primary rim tri-differentiated α-cyclodextrin , 2006 .

[23]  M. Sollogoub,et al.  Sequential ring closing/opening metathesis for the highly selective synthesis of a triply bifunctionalized alpha-cyclodextrin. , 2006, Chemical communications.

[24]  M. Sollogoub,et al.  Diisobutylaluminium hydride (DIBAL-H) is promoting a selective clockwise debenzylation of perbenzylated 6A,6D-dideoxy-α-cyclodextrin , 2005 .

[25]  L. Toupet,et al.  A new approach to A,B-difunctionalisation of cyclodextrins using bulky 1,3-bis[bis(aryl)chloromethyl]benzenes as capping reagents. , 2005, Organic & biomolecular chemistry.

[26]  M. Sollogoub,et al.  Triisobutylaluminium and diisobutylaluminium hydride as molecular scalpels: the regioselective stripping of perbenzylated sugars and cyclodextrins. , 2004, Chemistry.

[27]  L. Toupet,et al.  Diastereospecific synthesis of phosphinidene-capped cyclodextrins leading to "introverted" ligands. , 2004, Chemical communications.

[28]  J. Schatz,et al.  Calix[4]arene‐Supported N‐Heterocyclic Carbene Ligands as Catalysts for Suzuki Cross‐Coupling Reactions of Chlorotoluene , 2004 .

[29]  J. Mallet,et al.  An efficient preparation of 6I, IV dihydroxy permethylated β-cyclodextrin , 2003 .

[30]  E. Engeldinger,et al.  Cyclodextrin phosphanes as first and second coordination sphere cavitands. , 2003, Chemistry.

[31]  D. Armspach,et al.  Selective Tetrafunctionalisation of α‐Cyclodextrin using the Supertrityl Protecting Group − Synthesis of the First C2‐Symmetric Tetraphosphane Based on a Cavitand (α‐TEPHOS) , 2003 .

[32]  D. Armspach,et al.  Cyclodextrin‐Encapsulated Iron Catalysts for the Polymerization of Ethylene , 2003 .

[33]  Qian Wang,et al.  Bioconjugation by copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. , 2003, Journal of the American Chemical Society.

[34]  J. Rebek,et al.  Recognition and catalysis in allylic alkylations. , 2002, Organic letters.

[35]  Morten Meldal,et al.  Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. , 2002, The Journal of organic chemistry.

[36]  M. Reetz,et al.  Synthesis of a gold(I) complex with a (thio)phosphine-modified β -cyclodextrin , 2002 .

[37]  G. Jia,et al.  Synthesis of a novel β-cyclodextrin-functionalized diphosphine ligand and its catalytic properties for asymmetric hydrogenation , 2002 .

[38]  B. Kersting Carbon Dioxide Fixation by Binuclear Complexes with Hydrophobic Binding Pockets. , 2001, Angewandte Chemie.

[39]  D. Armspach,et al.  Metal-capped alpha-cyclodextrins: squaring the circle. , 2001, Inorganic chemistry.

[40]  G. Jia,et al.  Palladium and Platinum Complexes with a β-Cyclodextrin-Functionalized Phosphine Ligand , 2001 .

[41]  A. D. Cian,et al.  Gezielte Positionierung metallorganischer Komplexfragmente in einem Calix[4]aren‐Hohlraum , 1998 .

[42]  J. Tuchagues,et al.  Calixaren‐Kupfer(I)‐Komplexe als Modelle für einkernige Kupfer‐Zentren in Enzymen , 1998 .

[43]  S. Hanessian,et al.  THE SYNTHESIS OF FUNCTIONALIZED CYCLODEXTRINS AS SCAFFOLDS AND TEMPLATES FOR MOLECULAR DIVERSITY, CATALYSIS, AND INCLUSION PHENOMENA , 1995 .

[44]  M. Sawamura,et al.  Synthesis and properties of a new chiral diphosphine ligand bearing a cyclodextrin-based molecular recognition site and its palladium(II) complex , 1993 .

[45]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[46]  P. Leeuwen,et al.  Eine Käfigverbindung mit einem RhI-Zentrum mit selektiven katalytischen Eigenschaften† , 1992 .

[47]  A. Igau,et al.  Analogous .alpha.,.alpha.'-bis-carbenoid, triply bonded species: synthesis of a stable .lambda.3-phosphino carbene-.lambda.5-phosphaacetylene , 1988 .

[48]  G. Guillot,et al.  .beta.-Cyclodextrinylbisimidazole, a model for ribonuclease , 1978 .

[49]  D. Armspach,et al.  Metal-capped α-cyclodextrins: the crowning of the oligosaccharide torus with precious metals , 1999 .

[50]  M. Reetz,et al.  Synthesis of a phosphine-modified cyclodextrin and its rhodium complex , 1993 .

[51]  Richard L. Harlow,et al.  A stable crystalline carbene , 1991 .