Diametrically Opposed Carbenes on an α‐Cyclodextrin: Synthesis, Characterization of Organometallic Complexes and Suzuki–Miyaura Coupling in Ethanol and in Water
暂无分享,去创建一个
Yongming Zhang | M. Sollogoub | E. Monflier | S. Tilloy | F. Marcelo | M. Ménand | J. Jiménez‐Barbero | Maxime Guitet | Ségolène Adam de Beaumais | Filipa Marcelo
[1] Rafael Gramage‐Doria,et al. Metallated cavitands (calixarenes, resorcinarenes, cyclodextrins) with internal coordination sites , 2013 .
[2] G. Prencipe,et al. An "against the rules" double bank shot with diisobutylaluminum hydride to allow triple functionalization of α-cyclodextrin. , 2013, Angewandte Chemie.
[3] S. Menuel,et al. Cyclodextrin-phosphane possessing a guest-tunable conformation for aqueous rhodium-catalyzed hydroformylation. , 2012, Chemical communications.
[4] M. Sollogoub,et al. An N-heterocyclic carbene ligand based on a β-cyclodextrin–imidazolium salt: synthesis, characterization of organometallic complexes and Suzuki coupling , 2011 .
[5] E. Zaborova,et al. Cavitand supported tetraphosphine: cyclodextrin offers a useful platform for Suzuki-Miyaura cross-coupling. , 2011, Chemical communications.
[6] C. Slomianny,et al. Synthesis, Rhodium Complexes and Catalytic Applications of a New Water‐Soluble Triphenylphosphane‐Modified β‐Cyclodextrin , 2011 .
[7] É. Deunf,et al. Synthesis and Electrochemical Study of an Original Copper(II)‐Capped Salen–Cyclodextrin Complex , 2010 .
[8] E. Monflier,et al. New phosphane based on a beta-cyclodextrin, exhibiting a solvent-tunable conformation, and its catalytic properties. , 2010, Chemistry.
[9] S. Fukuzawa,et al. Synthesis of Dichlorobis(1,4-dimesityl-1H-1,2,3-triazol-5-ylidene)palladium [PdCl2(TMes)2] and Its Application to Suzuki–Miyaura Coupling Reaction , 2010 .
[10] E. Zaborova,et al. μ-Waves avoid large excesses of diisobutylaluminium-hydride (DIBAL-H) in the debenzylation of perbenzylated α-cyclodextrin , 2010 .
[11] Ming Yang,et al. Diisobutylaluminium Hydride (DIBAL-H) Promoted Secondary Rim Regioselective Demethylations of Permethylated β-Cyclodextrin: A Mechanistic Proposal , 2010 .
[12] J. Dutasta,et al. Hemicryptophane–oxidovanadium(V) complexes: Lead of a new class of efficient supramolecular catalysts , 2009 .
[13] J. Mata,et al. Complexes with poly(N-heterocyclic carbene) ligands: structural features and catalytic applications. , 2009, Chemical reviews.
[14] M. Albrecht,et al. 1,2,3-Triazolylidenes as versatile abnormal carbene ligands for late transition metals. , 2008, Journal of the American Chemical Society.
[15] F. Perret,et al. Control of the regioselectivity for new fluorinated amphiphilic cyclodextrins: synthesis of di- and tetra(6-deoxy-6-alkylthio)- and 6-(perfluoroalkypropanethio)-alpha-cyclodextrin derivatives. , 2008, The Journal of organic chemistry.
[16] M. Sollogoub,et al. Multiple homo- and hetero-functionalizations of alpha-cyclodextrin through oriented deprotections. , 2008, The Journal of organic chemistry.
[17] M. Sollogoub,et al. Chemical Clockwise Tridifferentiation of α‐ and β‐Cyclodextrins: Bascule‐Bridge or Deoxy‐Sugars Strategies , 2007 .
[18] L. Toupet,et al. Synthesis and properties of TRANSDIP, a rigid chelator built upon a cyclodextrin cavity: is TRANSDIP an authentic trans-spanning ligand? , 2007, Chemistry.
[19] M. Font‐Bardia,et al. Imidazolium−Calix[4]arene Molecular Frameworks: Bis(N-heterocyclic carbenes) as Bidentate Ligands† , 2007 .
[20] L. Toupet,et al. alpha-TEPHOS: a cyclodextrin-derived tetraphosphine for multiple metal binding. , 2007, Dalton transactions.
[21] H. Lee,et al. Nonchelate and Chelate Complexes of Palladium(II) with N-Heterocyclic Carbene Ligands of Amido Functionality , 2007 .
[22] M. Sollogoub,et al. Expeditious selective synthesis of primary rim tri-differentiated α-cyclodextrin , 2006 .
[23] M. Sollogoub,et al. Sequential ring closing/opening metathesis for the highly selective synthesis of a triply bifunctionalized alpha-cyclodextrin. , 2006, Chemical communications.
[24] M. Sollogoub,et al. Diisobutylaluminium hydride (DIBAL-H) is promoting a selective clockwise debenzylation of perbenzylated 6A,6D-dideoxy-α-cyclodextrin , 2005 .
[25] L. Toupet,et al. A new approach to A,B-difunctionalisation of cyclodextrins using bulky 1,3-bis[bis(aryl)chloromethyl]benzenes as capping reagents. , 2005, Organic & biomolecular chemistry.
[26] M. Sollogoub,et al. Triisobutylaluminium and diisobutylaluminium hydride as molecular scalpels: the regioselective stripping of perbenzylated sugars and cyclodextrins. , 2004, Chemistry.
[27] L. Toupet,et al. Diastereospecific synthesis of phosphinidene-capped cyclodextrins leading to "introverted" ligands. , 2004, Chemical communications.
[28] J. Schatz,et al. Calix[4]arene‐Supported N‐Heterocyclic Carbene Ligands as Catalysts for Suzuki Cross‐Coupling Reactions of Chlorotoluene , 2004 .
[29] J. Mallet,et al. An efficient preparation of 6I, IV dihydroxy permethylated β-cyclodextrin , 2003 .
[30] E. Engeldinger,et al. Cyclodextrin phosphanes as first and second coordination sphere cavitands. , 2003, Chemistry.
[31] D. Armspach,et al. Selective Tetrafunctionalisation of α‐Cyclodextrin using the Supertrityl Protecting Group − Synthesis of the First C2‐Symmetric Tetraphosphane Based on a Cavitand (α‐TEPHOS) , 2003 .
[32] D. Armspach,et al. Cyclodextrin‐Encapsulated Iron Catalysts for the Polymerization of Ethylene , 2003 .
[33] Qian Wang,et al. Bioconjugation by copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. , 2003, Journal of the American Chemical Society.
[34] J. Rebek,et al. Recognition and catalysis in allylic alkylations. , 2002, Organic letters.
[35] Morten Meldal,et al. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. , 2002, The Journal of organic chemistry.
[36] M. Reetz,et al. Synthesis of a gold(I) complex with a (thio)phosphine-modified β -cyclodextrin , 2002 .
[37] G. Jia,et al. Synthesis of a novel β-cyclodextrin-functionalized diphosphine ligand and its catalytic properties for asymmetric hydrogenation , 2002 .
[38] B. Kersting. Carbon Dioxide Fixation by Binuclear Complexes with Hydrophobic Binding Pockets. , 2001, Angewandte Chemie.
[39] D. Armspach,et al. Metal-capped alpha-cyclodextrins: squaring the circle. , 2001, Inorganic chemistry.
[40] G. Jia,et al. Palladium and Platinum Complexes with a β-Cyclodextrin-Functionalized Phosphine Ligand , 2001 .
[41] A. D. Cian,et al. Gezielte Positionierung metallorganischer Komplexfragmente in einem Calix[4]aren‐Hohlraum , 1998 .
[42] J. Tuchagues,et al. Calixaren‐Kupfer(I)‐Komplexe als Modelle für einkernige Kupfer‐Zentren in Enzymen , 1998 .
[43] S. Hanessian,et al. THE SYNTHESIS OF FUNCTIONALIZED CYCLODEXTRINS AS SCAFFOLDS AND TEMPLATES FOR MOLECULAR DIVERSITY, CATALYSIS, AND INCLUSION PHENOMENA , 1995 .
[44] M. Sawamura,et al. Synthesis and properties of a new chiral diphosphine ligand bearing a cyclodextrin-based molecular recognition site and its palladium(II) complex , 1993 .
[45] W. Goddard,et al. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .
[46] P. Leeuwen,et al. Eine Käfigverbindung mit einem RhI-Zentrum mit selektiven katalytischen Eigenschaften† , 1992 .
[47] A. Igau,et al. Analogous .alpha.,.alpha.'-bis-carbenoid, triply bonded species: synthesis of a stable .lambda.3-phosphino carbene-.lambda.5-phosphaacetylene , 1988 .
[48] G. Guillot,et al. .beta.-Cyclodextrinylbisimidazole, a model for ribonuclease , 1978 .
[49] D. Armspach,et al. Metal-capped α-cyclodextrins: the crowning of the oligosaccharide torus with precious metals , 1999 .
[50] M. Reetz,et al. Synthesis of a phosphine-modified cyclodextrin and its rhodium complex , 1993 .
[51] Richard L. Harlow,et al. A stable crystalline carbene , 1991 .