Jump-Diffusion Risk-Sensitive Benchmarked Asset Management

AbstractIn earlier works (Davis and Lleo, 2011b; Davis and Lleo, 2012), we showed that jump-diffusion risk-sensitive asset management problem without benchmark admit a unique classical (C1, 2) solution. In this article we extend these solution techniques to a benchmarked asset management problem with jumps. Benchmarked asset management problems are highly relevant to the financial industry: most investment funds have a benchmark, such as a financial index or a customized portfolio, against which their performance is assessed. We show here under two different sets of assumptions that the stochastic control problem associated with the benchmarked aset management problem admits a unique C1, 2 solution and that the optimal investment strategy exists and is unique.

[1]  Xin Guo,et al.  Impulse Control of Multi-dimensional Jump Diffusions in Finite Time Horizon , 2011 .

[2]  Bruno Bouchard,et al.  Weak Dynamic Programming Principle for Viscosity Solutions , 2011, SIAM J. Control. Optim..

[3]  Sébastien Lleo,et al.  Jump-Diffusion Risk-Sensitive Asset Management II: Jump-Diffusion Factor Model , 2011, SIAM J. Control. Optim..

[4]  Sébastien Lleo,et al.  Jump-Diffusion Risk-Sensitive Asset Management I: Diffusion Factor Model , 2010, SIAM J. Financial Math..

[5]  Xin Guo,et al.  Impulse Control of Multidimensional Jump Diffusions , 2009, SIAM J. Control. Optim..

[6]  Mark H. A. Davis,et al.  Risk-sensitive benchmarked asset management , 2008 .

[7]  G. Barles,et al.  Second-order elliptic integro-differential equations: viscosity solutions' theory revisited , 2007, math/0702263.

[8]  M. Yor,et al.  Equivalent and absolutely continuous measure changes for jump-diffusion processes , 2005, math/0508450.

[9]  S. Eddy What is dynamic programming? , 2004, Nature Biotechnology.

[10]  Huyên Pham,et al.  A large deviations approach to optimal long term investment , 2003, Finance Stochastics.

[11]  H. Nagai,et al.  Risk-sensitive portfolio optimization on infinite time horizon , 2002 .

[12]  Sid Browne,et al.  Beating a moving target: Optimal portfolio strategies for outperforming a stochastic benchmark , 1999, Finance Stochastics.

[13]  S. Pliska,et al.  Risk-Sensitive Dynamic Asset Management , 1999 .

[14]  W. Fleming,et al.  Controlled Markov processes and viscosity solutions , 1992 .

[15]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[16]  N. Krylov Controlled Diffusion Processes , 1980 .

[17]  W. Fleming,et al.  Deterministic and Stochastic Optimal Control , 1975 .

[18]  Mark H. A. Davis,et al.  Risk-Sensitive Asset Management , 2014 .

[19]  Mareen Benk Intertemporal Surplus Management with Jump Risks , 2013 .

[20]  Mark H. A. Davis,et al.  Fractional Kelly Strategies for Benchmarked Asset Management , 2011 .

[21]  W. Beisheim,et al.  Intertemporal Surplus Management * , 1999 .

[22]  Huy En Pham Optimal Stopping of Controlled Jump Diiusion Processes: a Viscosity Solution Approach , 1998 .

[23]  Nicolai V. Krylov,et al.  Nonlinear Elliptic and Parabolic Equations of the Second Order Equations , 1987 .

[24]  Hiromasa Haneda,et al.  ESTIMATION. AND CONTROL AND/OR ANALYSIS , 1986 .

[25]  J. Mémin Decompositions multiplicatives de semimartingales exponentielles et applications , 1978 .

[26]  F. Black Capital Market Equilibrium with Restricted Borrowing , 1972 .

[27]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[28]  D. Luenberger Optimization by Vector Space Methods , 1968 .