Submesoscale currents in the ocean

This article is a perspective on the recently discovered realm of submesoscale currents in the ocean. They are intermediate-scale flow structures in the form of density fronts and filaments, topographic wakes and persistent coherent vortices at the surface and throughout the interior. They are created from mesoscale eddies and strong currents, and they provide a dynamical conduit for energy transfer towards microscale dissipation and diapycnal mixing. Consideration is given to their generation mechanisms, instabilities, life cycles, disruption of approximately diagnostic force balance (e.g. geostrophy), turbulent cascades, internal-wave interactions, and transport and dispersion of materials. At a fundamental level, more questions remain than answers, implicating a programme for further research.

[1]  C. Garrett,et al.  Boundary Mixing and Arrested Ekman Layers: Rotating Stratified Flow Near a Sloping Boundary , 1993 .

[2]  Lee-Lueng Fu,et al.  Eddy dynamics from satellite altimetry , 2010 .

[3]  Joseph H. LaCasce,et al.  Statistics from Lagrangian observations , 2008 .

[4]  Alistair Adcroft,et al.  Routes to energy dissipation for geostrophic flows in the Southern Ocean , 2012, Nature Geoscience.

[5]  J. McWilliams,et al.  Cold filamentary intensification and oceanic surface convergence lines , 2009 .

[6]  T. Özgökmen,et al.  Seasonality of the submesoscale dynamics in the Gulf Stream region , 2013, Ocean Dynamics.

[7]  M. Longuet-Higgins Longshore currents generated by obliquely incident sea waves: 1 , 1970 .

[8]  Peter H. Stone,et al.  On Non-Geostrophic Baroclinic Stability , 1966 .

[9]  James C. McWilliams,et al.  Island Wakes in Deep Water , 2007 .

[10]  J. McWilliams,et al.  Stimulated Imbalance and the Enhancement of Eddy Kinetic Energy Dissipation by Internal Waves , 2017 .

[11]  T. Osborn,et al.  Estimates of the Local Rate of Vertical Diffusion from Dissipation Measurements , 1980 .

[12]  Libe Washburn,et al.  The evolving structure of an upwelling filament , 1985 .

[13]  J. R. Taylor,et al.  Reduction of the usable wind‐work on the general circulation by forced symmetric instability , 2010 .

[14]  James C. McWilliams,et al.  Surface kinetic energy transfer in surface quasi-geostrophic flows , 2008, Journal of Fluid Mechanics.

[15]  B. Fox‐Kemper,et al.  Symmetric and Geostrophic Instabilities in the Wave-Forced Ocean Mixed Layer , 2015 .

[16]  C. Schär Mesoscale mountains and the larger-scale atmospheric dynamics: A review , 2002 .

[17]  Helga S. Huntley,et al.  Submesoscale dispersion in the vicinity of the Deepwater Horizon spill , 2014, Proceedings of the National Academy of Sciences.

[18]  J. McWilliams,et al.  Surface Kinetic Energy Transfer in SQG Flows , 2007 .

[19]  J. McWilliams,et al.  Submesoscale Instability and Generation of Mesoscale Anticyclones near a Separation of the California Undercurrent , 2015 .

[20]  R. Ferrari,et al.  Radiation and Dissipation of Internal Waves Generated by Geostrophic Motions Impinging on Small-Scale Topography: Theory , 2010 .

[21]  J. McWilliams,et al.  Topographic generation of submesoscale centrifugal instability and energy dissipation , 2016, Nature Communications.

[22]  Thomas W. N. Haine,et al.  Gravitational, Symmetric, and Baroclinic Instability of the Ocean Mixed Layer , 1998 .

[23]  M. Jeroen Molemaker,et al.  Balanced and unbalanced routes to dissipation in an equilibrated Eady flow , 2010, Journal of Fluid Mechanics.

[24]  R. Ferrari,et al.  Frontogenesis, and the Stratification of the Surface Mixed Layer, , 2008 .

[25]  J. McWilliams,et al.  Baroclinic Frontal Arrest: A Sequel to Unstable Frontogenesis , 2011 .

[26]  P. Scully-Power Navy Oceanographer Shuttle Observations, STS 41-G Mission Report , 1986 .

[27]  K. Brink,et al.  Buoyancy Arrest and Bottom Ekman Transport. Part I: Steady Flow , 2010 .

[28]  Raffaele Ferrari,et al.  Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean , 2011 .

[29]  J. McWilliams,et al.  Vortex evolution due to straining: a mechanism for dominance of strong, interior anticyclones , 2006 .

[30]  Craig M. Lee,et al.  Eddy-Driven Stratification Initiates North Atlantic Spring Phytoplankton Blooms , 2012, Science.

[31]  Chris Snyder,et al.  An Analysis of Frontogenesis in Numerical Simulations of Baroclinic Waves , 1994 .

[32]  J. McWilliams Submesoscale surface fronts and filaments: secondary circulation, buoyancy flux, and frontogenesis , 2017, Journal of Fluid Mechanics.

[33]  Alexander F. Shchepetkin,et al.  Filament Frontogenesis by Boundary Layer Turbulence , 2015 .

[34]  B. Farrell Developing disturbances in shear , 1987 .

[35]  B. Fox‐Kemper,et al.  Surface waves affect frontogenesis , 2016 .

[36]  Adrian P. Martin,et al.  Bringing physics to life at the submesoscale , 2012 .

[37]  Craig M. Lee,et al.  Symmetric Instability, Inertial Oscillations, and Turbulence at the Gulf Stream Front , 2016 .

[38]  W. Munk,et al.  Spirals on the sea , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[39]  David P. Marshall,et al.  The seasonal cycle of submesoscale flows , 2015 .

[40]  J. McWilliams,et al.  Local balance and cross-scale flux of available potential energy , 2010, Journal of Fluid Mechanics.

[41]  James C. McWilliams,et al.  Axisymmetrization and vorticity-gradient intensification of an isolated two-dimensional vortex through filamentation , 1987, Journal of Fluid Mechanics.

[42]  Hiroyasu Hasumi,et al.  Ocean modeling in an eddying regime , 2008 .

[43]  B. Fox‐Kemper,et al.  Understanding Stokes forces in the wave‐averaged equations , 2016 .

[44]  Mary Jane Perry,et al.  Eddy-driven subduction exports particulate organic carbon from the spring bloom , 2015, Science.

[45]  J. McWilliams,et al.  Mesoscale to Submesoscale Transition in the California Current System. Part I: Flow Structure, Eddy Flux, and Observational Tests , 2008 .

[46]  Baylor Fox-Kemper,et al.  Parameterization of Mixed Layer Eddies. I: Theory and Diagnosis , 2007 .

[47]  I. Yavneh,et al.  Baroclinic Instability and Loss of Balance , 2005 .

[48]  E. Lindborg,et al.  The route to dissipation in strongly stratified and rotating flows , 2013, Journal of Fluid Mechanics.

[49]  B. Fox‐Kemper,et al.  Langmuir–Submesoscale Interactions: Descriptive Analysis of Multiscale Frontal Spindown Simulations , 2014 .

[50]  E. Campos,et al.  Submesoscale activity over the Argentinian shelf , 2008 .

[51]  B. Hoskins The role of potential vorticity in symmetric stability and instability , 1974 .

[52]  Patrice Klein,et al.  Dynamics of the Upper Oceanic Layers in Terms of Surface Quasigeostrophy Theory , 2006 .

[53]  D. Kennedy Introduction to This Special Issue On Marine Renewable Energy , 2010 .

[54]  E. Lindborg,et al.  The energy cascade in a strongly stratified fluid , 2006, Journal of Fluid Mechanics.

[55]  I. Yavneh,et al.  The breakdown of large-scale flows in rotating, stratified fluids , 1998 .

[56]  Dirk Klaeschen,et al.  Ocean temperature and salinity inverted from combined hydrographic and seismic data , 2010 .

[57]  B. Hoskins,et al.  The Mathematical Theory of Frontogenesis , 1982 .

[58]  David G. Dritschel,et al.  The stability of a two-dimensional vorticity filament under uniform strain , 1991, Journal of Fluid Mechanics.

[59]  J. McWilliams,et al.  Dynamics of Winds and Currents Coupled to Surface Waves , 2010 .

[60]  Bo Qiu,et al.  Impact of oceanic-scale interactions on the seasonal modulation of ocean dynamics by the atmosphere , 2014, Nature Communications.

[61]  N. L. Owsley Naval Underwater Systems Center , 1982 .

[62]  James C. McWilliams,et al.  Mesoscale to submesoscale transition in the California current system. Part III: Energy balance and flux , 2008 .

[63]  James C. McWilliams,et al.  Submesoscale, coherent vortices in the ocean , 1985 .

[64]  L. Thomas,et al.  Destruction of Potential Vorticity by Winds , 2005 .

[65]  B. Fox‐Kemper,et al.  Eddy parameterization challenge suite I: Eady spindown , 2013 .

[66]  James C. McWilliams,et al.  Mesoscale to Submesoscale Transition in the California Current System. Part II: Frontal Processes , 2008 .

[67]  C. Shakespeare,et al.  The spontaneous generation of inertia–gravity waves during frontogenesis forced by large strain: numerical solutions , 2015, Journal of Fluid Mechanics.

[68]  James C. McWilliams,et al.  Vortex generation through balanced adjustment , 1988 .

[69]  J. G. Charney,et al.  THE DYNAMICS OF LONG WAVES IN A BAROCLINIC WESTERLY CURRENT , 1947 .

[70]  Chris Snyder,et al.  Frontal Dynamics near and following Frontal Collapse , 1993 .

[71]  S. Leibovich,et al.  A rational model for Langmuir circulations , 1976, Journal of Fluid Mechanics.

[72]  Peter H. Haynes,et al.  On the Evolution of Vorticity and Potential Vorticity in the Presence of Diabatic Heating and Frictional or Other Forces , 1987 .

[73]  Eric A. D'Asaro,et al.  Generation of submesoscale vortices: A new mechanism , 1988 .

[74]  Irad Yavneh,et al.  Anisotropy and Coherent Vortex Structures in Planetary Turbulence , 1994, Science.

[75]  J. Vanneste Balance and Spontaneous Wave Generation in Geophysical Flows , 2013 .

[76]  R. Ferrari,et al.  Symmetric instability in the Gulf Stream , 2013 .

[77]  Alexander F. Shchepetkin,et al.  Multigrid Solution of Rotating, Stably Stratified Flows , 1997 .

[78]  J. McWilliams,et al.  Centrifugal Instability and Mixing in the California Undercurrent , 2015 .

[79]  B. Fox‐Kemper,et al.  Parameterization of Mixed Layer Eddies. Part I. Theory and Diagnosis , 2008 .

[80]  Francis P. Bretherton,et al.  Atmospheric Frontogenesis Models: Mathematical Formulation and Solution , 1972 .

[81]  Submesoscale circulation in the northern Gulf of Mexico: Surface processes and the impact of the freshwater river input , 2015, 1511.01458.

[82]  J. McWilliams,et al.  Ageostrophic instability in rotating, stratified interior vertical shear flows , 2014, Journal of Fluid Mechanics.

[83]  M. McIntyre,et al.  Wave capture and wave–vortex duality , 2005, Journal of Fluid Mechanics.

[84]  S. Bachman,et al.  Numerical Simulations of the Equilibrium between Eddy-Induced Restratification and Vertical Mixing , 2016 .

[85]  A. Pouquet,et al.  Resolving the paradox of oceanic large-scale balance and small-scale mixing. , 2015, Physical review letters.

[86]  Craig M. Lee,et al.  Enhanced Turbulence and Energy Dissipation at Ocean Fronts , 2011, Science.

[87]  E. Kunze Near-Inertial Wave Propagation In Geostrophic Shear , 1985 .

[88]  L. Thomas,et al.  On the effects of frontogenetic strain on symmetric instability and inertia–gravity waves , 2012, Journal of Fluid Mechanics.

[89]  R. Samelson,et al.  Baroclinic Frontal Instabilities and Turbulent Mixing in the Surface Boundary Layer. Part I: Unforced Simulations , 2012 .

[90]  Balasubramanya T. Nadiga,et al.  Nonlinear evolution of a baroclinic wave and imbalanced dissipation , 2014, Journal of Fluid Mechanics.

[91]  B. Fox‐Kemper,et al.  Effects of submesoscale turbulence on ocean tracers , 2016 .

[92]  Ayon Sen,et al.  Global energy dissipation rate of deep‐ocean low‐frequency flows by quadratic bottom boundary layer drag: Computations from current‐meter data , 2008 .

[93]  J. McWilliams,et al.  Topographic vorticity generation, submesoscale instability and vortex street formation in the Gulf Stream , 2015 .

[94]  J. McWilliams,et al.  Mesoscale Eddy Buoyancy Flux and Eddy-Induced Circulation in Eastern Boundary Currents , 2013 .

[95]  S. G. L. Smith,et al.  Energy Cascades and Loss of Balance in a Reentrant Channel Forced by Wind Stress and Buoyancy Fluxes , 2015 .

[96]  J. Restrepo,et al.  An asymptotic theory for the interaction of waves and currents in coastal waters , 2004, Journal of Fluid Mechanics.

[97]  P. Bartello Quasigeostrophic and stratified turbulence in the atmosphere , 2010 .

[98]  K. Swanson,et al.  Surface quasi-geostrophic dynamics , 1995, Journal of Fluid Mechanics.

[99]  J. McWilliams,et al.  Linear Fluctuation Growth during Frontogenesis , 2009 .

[100]  C. Shakespeare,et al.  The spontaneous generation of inertia–gravity waves during frontogenesis forced by large strain: theory , 2014, Journal of Fluid Mechanics.

[101]  P. Bartello Geostrophic Adjustment and Inverse Cascades in Rotating Stratified Turbulence , 1995 .

[102]  J. McWilliams,et al.  Submesoscale currents in the northern Gulf of Mexico: Deep phenomena and dispersion over the continental slope , 2015, 1602.04209.

[103]  R. Ferrari,et al.  On the equilibration of a symmetrically unstable front via a secondary shear instability , 2009, Journal of Fluid Mechanics.

[104]  M. Jeroen Molemaker,et al.  Gulf Stream Dynamics along the Southeastern U.S. Seaboard , 2015 .

[105]  R. Ferrari,et al.  Thermohaline variability in the upper ocean , 2000 .

[106]  J. McWilliams Diagnostic Force Balance and its Limits , 2003 .

[107]  B. Fox‐Kemper,et al.  Oceanic wave-balanced surface fronts and filaments , 2013, Journal of Fluid Mechanics.

[108]  Amala Mahadevan,et al.  The Impact of Submesoscale Physics on Primary Productivity of Plankton. , 2016, Annual review of marine science.

[109]  P. Gent,et al.  Parameterizing eddy-induced tracer transports in ocean circulation models , 1995 .

[110]  E. T. Eady,et al.  Long Waves and Cyclone Waves , 1949 .

[111]  W. Dewar,et al.  Meddy–Seamount Interactions: Implications for the Mediterranean Salt Tongue , 2003 .

[112]  John K. Tomfohr,et al.  Lecture Notes on Physics , 1879, Nature.

[113]  J. McWilliams,et al.  Submesoscale Cold Filaments in the Gulf Stream , 2014 .

[114]  Alexander F. Shchepetkin,et al.  Procedures for offline grid nesting in regional ocean models , 2010 .

[115]  P. Killworth,et al.  Ageostrophic instability of ocean currents , 1982, Journal of Fluid Mechanics.

[116]  C. Wunsch,et al.  Ocean Circulation Kinetic Energy: Reservoirs, Sources, and Sinks , 2009 .

[117]  Amit Tandon,et al.  Rapid changes in mixed layer stratification driven by submesoscale instabilities and winds , 2010 .

[118]  W. Burnett,et al.  Aerial infrared imaging reveals large nutrient‐rich groundwater inputs to the ocean , 2008 .