On the Complexity of Counting the Hilbert Basis of a Linear Diophnatine System

We investigate the computational complexity of counting the Hilbert basis of a homogeneous system of linear Diophantine equations. We establish lower and upper bounds on the complexity of this problem by showing that counting the Hilbert basis is #P-hard and belongs to the class #NP. Moreover, we investigate the complexity of variants obtained by restricting the number of occurrences of the variables in the system.

[1]  Christos H. Papadimitriou,et al.  On the complexity of integer programming , 1981, JACM.

[2]  Evelyne Contejean,et al.  A new AC unification algorithm with an algorithm for solving systems of diophantine equations , 1990, [1990] Proceedings. Fifth Annual IEEE Symposium on Logic in Computer Science.

[3]  Patrick Lincoln,et al.  Adventures in Associative-Commutative Unification , 1989, J. Symb. Comput..

[5]  Phokion G. Kolaitis,et al.  The Complexity of Counting Problems in Equational Matching , 1995, J. Symb. Comput..

[6]  Gérard P. Huet,et al.  An Algorithm to Generate the Basis of Solutions to Homogeneous Linear Diophantine Equations , 1978, Inf. Process. Lett..

[7]  Robert Weismantel,et al.  On Hilbert bases of polyhedral cones , 1996 .

[8]  Loïc Pottier Minimal Solutions of Linear Diophantine Systems: Bounds and Algorithms , 1991, RTA.

[9]  Eric Domenjoud,et al.  Solving Systems of Linear Diophantine Equations: An Algebraic Approach , 1991, MFCS.

[10]  Osamu Watanabe,et al.  Polynomial Time 1-Turing Reductions from #PH to #P , 1992, Theor. Comput. Sci..

[11]  András Sebö,et al.  Hilbert Bases, Caratheodory's Theorem and Combinatorial Optimization , 1990, IPCO.

[12]  Evelyne Contejean,et al.  An Efficient Incremental Algorithm for Solving Systems of Linear Diophantine Equations , 1994, Inf. Comput..

[13]  J. Siekmann,et al.  Abelian semigroups , 1987 .

[14]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[15]  戸田 誠之助,et al.  Computational complexity of counting complexity classes , 1991 .

[16]  David S. Johnson,et al.  A Catalog of Complexity Classes , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[17]  Tobias Nipkow,et al.  Term rewriting and all that , 1998 .

[18]  Salah E. Elmaghraby,et al.  On the reduction method for integer linear programs, II , 1985, Discret. Appl. Math..

[19]  Heribert Vollmer,et al.  The satanic notations , 1995, SIGACT News.

[20]  Éric Domenjoud Outils pour la déduction automatique dans les théories associative-commutatives , 1991 .

[21]  Leslie G. Valiant,et al.  The Complexity of Enumeration and Reliability Problems , 1979, SIAM J. Comput..

[22]  P. Gordan Ueber die Auflösung linearer Gleichungen mit reellen Coefficienten , 1873 .

[23]  Jan van Leeuwen,et al.  Handbook of Theoretical Computer Science, Vol. A: Algorithms and Complexity , 1994 .

[24]  Seinosuke Toda On the computational power of PP and (+)P , 1989, 30th Annual Symposium on Foundations of Computer Science.

[25]  Ravi Kannan,et al.  Polynomial Algorithms for Computing the Smith and Hermite Normal Forms of an Integer Matrix , 1979, SIAM J. Comput..

[26]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[27]  Phokion G. Kolaitis,et al.  Computational Complexity of Simultaneous Elementary Matching Problems (Extended Abstract) , 1995, MFCS.

[28]  Jack Edmonds,et al.  Total Dual Integrality of Linear Inequality Systems , 1984 .

[29]  Mark E. Stickel A Complete Unification Algorithm for Associative-Commutative Functions , 1975, IJCAI.

[30]  François Fages Associative-Commutative Unification , 1987, J. Symb. Comput..

[31]  Viktória Zankó,et al.  #P-Completeness via Many-One Reductions , 1990, Int. J. Found. Comput. Sci..

[32]  Paliath Narendran,et al.  Complexity of Matching Problems , 1987, J. Symb. Comput..

[33]  Claude Kirchner,et al.  Solving Equations in Abstract Algebras: A Rule-Based Survey of Unification , 1991, Computational Logic - Essays in Honor of Alan Robinson.

[34]  Mark E. Stickel,et al.  A Unification Algorithm for Associative-Commutative Functions , 1981, JACM.

[35]  Michael Clausen,et al.  Efficient Solution of Linear Diophantine Equations , 1989, J. Symb. Comput..

[36]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..