On the Complexity of Counting the Hilbert Basis of a Linear Diophnatine System
暂无分享,去创建一个
[1] Christos H. Papadimitriou,et al. On the complexity of integer programming , 1981, JACM.
[2] Evelyne Contejean,et al. A new AC unification algorithm with an algorithm for solving systems of diophantine equations , 1990, [1990] Proceedings. Fifth Annual IEEE Symposium on Logic in Computer Science.
[3] Patrick Lincoln,et al. Adventures in Associative-Commutative Unification , 1989, J. Symb. Comput..
[5] Phokion G. Kolaitis,et al. The Complexity of Counting Problems in Equational Matching , 1995, J. Symb. Comput..
[6] Gérard P. Huet,et al. An Algorithm to Generate the Basis of Solutions to Homogeneous Linear Diophantine Equations , 1978, Inf. Process. Lett..
[7] Robert Weismantel,et al. On Hilbert bases of polyhedral cones , 1996 .
[8] Loïc Pottier. Minimal Solutions of Linear Diophantine Systems: Bounds and Algorithms , 1991, RTA.
[9] Eric Domenjoud,et al. Solving Systems of Linear Diophantine Equations: An Algebraic Approach , 1991, MFCS.
[10] Osamu Watanabe,et al. Polynomial Time 1-Turing Reductions from #PH to #P , 1992, Theor. Comput. Sci..
[11] András Sebö,et al. Hilbert Bases, Caratheodory's Theorem and Combinatorial Optimization , 1990, IPCO.
[12] Evelyne Contejean,et al. An Efficient Incremental Algorithm for Solving Systems of Linear Diophantine Equations , 1994, Inf. Comput..
[13] J. Siekmann,et al. Abelian semigroups , 1987 .
[14] Alexander Schrijver,et al. Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.
[15] 戸田 誠之助,et al. Computational complexity of counting complexity classes , 1991 .
[16] David S. Johnson,et al. A Catalog of Complexity Classes , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.
[17] Tobias Nipkow,et al. Term rewriting and all that , 1998 .
[18] Salah E. Elmaghraby,et al. On the reduction method for integer linear programs, II , 1985, Discret. Appl. Math..
[19] Heribert Vollmer,et al. The satanic notations , 1995, SIGACT News.
[20] Éric Domenjoud. Outils pour la déduction automatique dans les théories associative-commutatives , 1991 .
[21] Leslie G. Valiant,et al. The Complexity of Enumeration and Reliability Problems , 1979, SIAM J. Comput..
[22] P. Gordan. Ueber die Auflösung linearer Gleichungen mit reellen Coefficienten , 1873 .
[23] Jan van Leeuwen,et al. Handbook of Theoretical Computer Science, Vol. A: Algorithms and Complexity , 1994 .
[24] Seinosuke Toda. On the computational power of PP and (+)P , 1989, 30th Annual Symposium on Foundations of Computer Science.
[25] Ravi Kannan,et al. Polynomial Algorithms for Computing the Smith and Hermite Normal Forms of an Integer Matrix , 1979, SIAM J. Comput..
[26] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[27] Phokion G. Kolaitis,et al. Computational Complexity of Simultaneous Elementary Matching Problems (Extended Abstract) , 1995, MFCS.
[28] Jack Edmonds,et al. Total Dual Integrality of Linear Inequality Systems , 1984 .
[29] Mark E. Stickel. A Complete Unification Algorithm for Associative-Commutative Functions , 1975, IJCAI.
[30] François Fages. Associative-Commutative Unification , 1987, J. Symb. Comput..
[31] Viktória Zankó,et al. #P-Completeness via Many-One Reductions , 1990, Int. J. Found. Comput. Sci..
[32] Paliath Narendran,et al. Complexity of Matching Problems , 1987, J. Symb. Comput..
[33] Claude Kirchner,et al. Solving Equations in Abstract Algebras: A Rule-Based Survey of Unification , 1991, Computational Logic - Essays in Honor of Alan Robinson.
[34] Mark E. Stickel,et al. A Unification Algorithm for Associative-Commutative Functions , 1981, JACM.
[35] Michael Clausen,et al. Efficient Solution of Linear Diophantine Equations , 1989, J. Symb. Comput..
[36] Leslie G. Valiant,et al. The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..