The comparison of W/Cu and W/ZrC composites fabricated through hot-press

[1]  N. Parvin,et al.  Evaluation of microstructure and contiguity of W/Cu composites prepared by coated tungsten powders , 2009 .

[2]  Liu Liya,et al.  Microwave sintering W–Cu composites: Analyses of densification and microstructural homogenization , 2009 .

[3]  A. Hegazy,et al.  An experimental investigation on the W–Cu composites , 2009 .

[4]  Z. Liu,et al.  Numerical simulation of hot hydrostatic extrusion of W-40 wt.% Cu , 2009 .

[5]  Yu Zhou,et al.  Effect of temperature gradient in the disk during sintering on microstructure and mechanical properties of ZrCp/W composite , 2009 .

[6]  Yunping Li,et al.  Thermal–mechanical process in producing high dispersed tungsten–copper composite powder , 2008 .

[7]  A. Simchi,et al.  Solid state and liquid phase sintering of mechanically activated W–20 wt.% Cu powder mixture , 2008 .

[8]  Z. Liu,et al.  The influence of mechanical milling on the properties of W–40 wt.%Cu composite produced by hot extrusion , 2008 .

[9]  Yifu Shen,et al.  Influence of Cu-liquid content on densification and microstructure of direct laser sintered submicron W–Cu/micron Cu powder mixture , 2008 .

[10]  Jeong-Keun Lee On the effect of substituting copper powder with cupric salt for the sintering process of W–Cu MIM Parts , 2008 .

[11]  E. Wang,et al.  Research on the densification of W–40 wt.%Cu by liquid sintering and hot-hydrostatic extrusion , 2008 .

[12]  J. Fuh,et al.  Evaluation of W–Cu metal matrix composites produced by powder injection molding and liquid infiltration , 2008 .

[13]  Jian-Xin Xie,et al.  Fabrication of W–Cu functionally graded materials with high density by particle size adjustment and solid state hot press , 2008 .

[14]  Yu Zhou,et al.  Compressive deformation behavior of a 30 vol.%ZrCp/W composite at temperatures of 1300-1600 ◦ C , 2008 .

[15]  Myung-Jin Suk,et al.  Micropatterns of W-Cu composites fabricated by metal powder injection molding , 2007 .

[16]  Yu Zhou,et al.  Elevated temperature compressive failure behavior of a 30 vol.%ZrCp/W composite , 2007 .

[17]  Z. Zhong,et al.  Microstructural characterization of W/Cu functionally graded materials produced by a one-step resistance sintering method , 2007 .

[18]  J. Linke,et al.  Fabrication and characterization of vacuum plasma sprayed W/Cu-composites for extreme thermal conditions , 2007 .

[19]  K. Sandhage,et al.  Near net-shape, ultra-high melting, recession-resistant ZrC/W-based rocket nozzle liners via the displacive compensation of porosity (DCP) method , 2004 .

[20]  Yu Zhou,et al.  Effect of carbide particles on the ablation properties of tungsten composites , 2003 .

[21]  Seong‐Hyeon Hong,et al.  Fabrication of W–20 wt % Cu composite nanopowder and sintered alloy with high thermal conductivity , 2003 .

[22]  Yu Zhou,et al.  Thermomechanical properties of TiC particle-reinforced tungsten composites for high temperature applications , 2003 .

[23]  Yu Zhou,et al.  The mechanical and thermophysical properties of ZrC/W composites at elevated temperature , 2002 .

[24]  Yue Wang,et al.  The microstructure and elevated temperature strength of tungsten-titanium carbide composite , 2002 .

[25]  Yue Wang,et al.  Elevated temperature ablation resistance and thermophysical properties of tungsten matrix composites reinforced with ZrC particles , 2001 .

[26]  K. Sandhage,et al.  The displacive compensation of porosity (DCP) method for fabricating dense, shaped, high-ceramic-bearing bodies at modest temperatures , 1999 .

[27]  Y. Zhou,et al.  Elevated Temperature Strength of a 20 vol % ZrCp/W Composite , 1998 .