Toehold-mediated nonenzymatic DNA strand displacement as a platform for DNA genotyping.

Toehold-mediated DNA strand displacement provides unique advantages in the construction and manipulation of multidimensional DNA nanostructures as well as nucleic acid sequence analysis. We demonstrate a step change in the use of toehold-mediated DNA strand displacement reactions, where a double-stranded DNA duplex, containing a single-stranded toehold domain, enzymatically generated and then treated as a molecular target for analysis. The approach was successfully implemented for human DNA genotyping, such as gender identification where the amelogenin gene was used as a model target system, and detecting single nucleotide polymorphisms of human mitochondrial DNA. Kinetics of the strand displacement was monitored by the quenched Förster resonance energy transfer effect.

[1]  Xiaogang Qu,et al.  Design of proton-fueled tweezers for controlled, multi-function DNA-based molecular device. , 2010, Biochimie.

[2]  N. Seeman,et al.  A robust DNA mechanical device controlled by hybridization topology , 2002, Nature.

[3]  S. Yao,et al.  A novel DNA-templated click chemistry strategy for fluorescent detection of copper(II) ions. , 2012, Chemical communications.

[4]  I. Willner,et al.  Functional nucleic acid nanostructures and DNA machines. , 2010, Current opinion in biotechnology.

[5]  Morten H. H. Nørholm,et al.  A mutant Pfu DNA polymerase designed for advanced uracil-excision DNA engineering , 2010, BMC biotechnology.

[6]  P. Gill,et al.  A rapid and quantitative DNA sex test: fluorescence-based PCR analysis of X-Y homologous gene amelogenin. , 1993, BioTechniques.

[7]  Xi Chen,et al.  Rational, modular adaptation of enzyme-free DNA circuits to multiple detection methods , 2011, Nucleic acids research.

[8]  Chengde Mao,et al.  Molecular gears: a pair of DNA circles continuously rolls against each other. , 2004, Journal of the American Chemical Society.

[9]  I. Willner,et al.  Logic gates and antisense DNA devices operating on a translator nucleic Acid scaffold. , 2009, ACS nano.

[10]  Peter Gill,et al.  Forensic application of a rapid and quantitative DNA sex test by amplification of the X-Y homologous gene amelogenin , 2005, International Journal of Legal Medicine.

[11]  J. Kjems,et al.  Self-assembly of a nanoscale DNA box with a controllable lid , 2009, Nature.

[12]  M Reza Ghadiri,et al.  Universal translators for nucleic acid diagnosis. , 2009, Journal of the American Chemical Society.

[13]  Peng Yin,et al.  Optimizing the specificity of nucleic acid hybridization. , 2012, Nature chemistry.

[14]  Michael D. Coble,et al.  Mystery Solved: The Identification of the Two Missing Romanov Children Using DNA Analysis , 2009, PloS one.

[15]  D. Wallace,et al.  Mitochondrial DNA variation in human evolution and disease. , 1999, Gene.

[16]  Bryan A. Baker,et al.  Hybridization kinetics between immobilized double-stranded DNA probes and targets containing embedded recognition segments , 2011, Nucleic acids research.

[17]  A. Marshall,et al.  High resolution mass spectrometry. , 2012, Analytical chemistry.

[18]  A. Turberfield,et al.  A DNA-fuelled molecular machine made of DNA , 2022 .

[19]  Qiuping Guo,et al.  A new class of homogeneous nucleic acid probes based on specific displacement hybridization. , 2002, Nucleic acids research.

[20]  G. Seelig,et al.  Dynamic DNA nanotechnology using strand-displacement reactions. , 2011, Nature chemistry.

[21]  Brian M. Frezza,et al.  Modular multi-level circuits from immobilized DNA-based logic gates. , 2007, Journal of the American Chemical Society.

[22]  I. Bizjak,et al.  Measurement of branching fractions for B-->eta(c)K(*) decays. , 2002, Physical review letters.

[23]  D. Y. Zhang,et al.  Control of DNA strand displacement kinetics using toehold exchange. , 2009, Journal of the American Chemical Society.

[24]  Benjamin E. Krenke,et al.  Validation of a 16-locus fluorescent multiplex system. , 2002, Journal of forensic sciences.

[25]  L. Singh,et al.  Is the amelogenin gene reliable for gender identification in forensic casework and prenatal diagnosis? , 2002, International Journal of Legal Medicine.

[26]  David Yu Zhang,et al.  Cooperative hybridization of oligonucleotides. , 2011, Journal of the American Chemical Society.

[27]  D. Thaler,et al.  Optimizing Taq Polymerase Concentration for Improved Signal-to-Noise in the Broad Range Detection of Low Abundance Bacteria , 2009, PloS one.

[28]  G. Seelig,et al.  Enzyme-Free Nucleic Acid Logic Circuits , 2022 .

[29]  C. Mao,et al.  DNAzyme amplification of molecular beacon signal. , 2005, Talanta.

[30]  J. Hartley,et al.  Use of uracil DNA glycosylase to control carry-over contamination in polymerase chain reactions. , 1990, Gene.

[31]  Michael R. Diehl,et al.  Multiplexed and Reiterative Fluorescence Labeling via DNA Circuitry , 2010, Bioconjugate chemistry.

[32]  L. Pearl,et al.  A read-ahead function in archaeal DNA polymerases detects promutagenic template-strand uracil. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Hari K. K. Subramanian,et al.  The label-free unambiguous detection and symbolic display of single nucleotide polymorphisms on DNA origami. , 2011, Nano letters.

[34]  A. Turberfield,et al.  DNA fuel for free-running nanomachines. , 2003, Physical review letters.

[35]  A. Vologodskii,et al.  The kinetics of oligonucleotide replacements. , 2000, Journal of molecular biology.

[36]  Branch migration displacement assay with automated heuristic analysis for discrete DNA length measurement using DNA microarrays , 2007, Proceedings of the National Academy of Sciences.

[37]  Jonathan Bath,et al.  Remote toehold: a mechanism for flexible control of DNA hybridization kinetics. , 2011, Journal of the American Chemical Society.

[38]  Chunhai Fan,et al.  A DNA-Origami chip platform for label-free SNP genotyping using toehold-mediated strand displacement. , 2010, Small.

[39]  N. Pierce,et al.  Rewritable Memory by Controllable Nanopatterning of DNA , 2004 .

[40]  Michael Zuker,et al.  Mfold web server for nucleic acid folding and hybridization prediction , 2003, Nucleic Acids Res..